
Chapter 18
Forward Rates

Forward rates are interest rates used in Forward Rate Agreements (FRA) for
financial transactions, such as loans, that can take place at a future date.
This chapter deals with the modeling of forward rates and swap rates in the
Heath-Jarrow-Morton (HJM) and Brace-Gatarek-Musiela (BGM) models. It
also includes a presentation of the Nelson and Siegel (1987) and Svensson
(1994) curve parametrizations for yield curve fitting, and an introduction to
two-factor interest rate models.
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18.1 Construction of Forward Rates

A forward interest rate contract (or Forward Rate Agreement, FRA) gives
to its holder the possibility to lock an interest rate denoted by f(t,T ,S) at
present time t for a loan to be delivered over a future period of time [T ,S],
with t ⩽ T ⩽ S.

0 t T S

The rate f(t,T ,S) is called a forward interest rate. When T = t, the spot
forward rate f(t, t,S) is also called the yield, see Relation (18.3) below.

Figure 18.1 presents a typical yield curve on the LIBOR (London Interbank
Offered Rate) market with t =07 May 2003.
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Fig. 18.1: Graph of the spot forward rate S 7→ f(t, t, S).

Maturity transformation, i.e., the ability to transform short-term borrowing
(debt with short maturities, such as deposits) into long term lending (credits
with very long maturities, such as loans), is among the roles of banks. Prof-
itability is then dependent on the difference between long rates and short
rates.

Another example of market data is given in the next Figure 18.2, in which
the red and blue curves refer respectively to July 21 and 22 of year 2011.

Fig. 18.2: Market example of yield curves, cf. (18.3).

Long maturities usually correspond to higher rates as they carry an increased
risk. The dip observed with short maturities can correspond to a lower moti-
vation to lend/invest in the short-term. However, yield curves can take diverse
forms, see e.g. Figure 18.3.
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Fig. 18.3: Example of yield curve.

Forward rates from bond prices

Let us determine the arbitrage or “fair” value of the forward interest rate
f(t,T ,S) by implementing the Forward Rate Agreement using the instru-
ments available in the market, which are bonds priced at P (t,T ) for various
maturity dates T > t.
The loan can be realized using the available instruments (here, bonds) on the
market, by proceeding in two steps:

1) At time t, borrow the amount P (t,S) by issuing (or short selling) one
bond with maturity S, which means refunding $1 at time S.
2) Since the money is only needed at time T , the rational investor will
invest the amount P (t,S) over the period [t,T ] by buying a (possibly
fractional) quantity P (t,S)/P (t,T ) of a bond with maturity T priced
P (t,T ) at time t. This will yield the amount

$1 × P (t,S)
P (t,T )

at time T > 0.

As a consequence, the investor will actually receive P (t,S)/P (t,T ) at time
T , to refund $1 at time S.

The corresponding forward rate f(t,T ,S) is then given by the relation

P (t,S)
P (t,T ) exp ((S − T )f(t,T ,S)) = $1, 0 ⩽ t ⩽ T ⩽ S, (18.1)

where we used exponential compounding, which leads to the following defi-
nition (18.2).
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Definition 18.1. The forward rate f(t,T ,S) at time t for a loan on [T ,S]
is given by

f(t,T ,S) = logP (t,T ) − logP (t,S)
S − T

. (18.2)

The spot forward rate f(t, t,S) coincides with the yield y(t,S), with

f(t, t,S) = y(t,S) = − logP (t,S)
S − t

, or P (t,S) = e−(S−t)f (t,t,S),
(18.3)

0 ⩽ t ⩽ S.

Instantaneous forward rates

Proposition 18.2. The instantaneous forward rate f(t,T ) = f(t,T ,T ) is
defined by taking the limit of f(t,T ,S) as S ↘ T , and satisfies

f(t,T ) := lim
S↘T

f(t,T ,S) = − 1
P (t,T )

∂P

∂T
(t,T ). (18.4)

Proof. We have

f(t,T ) : = lim
S↘T

f(t,T ,S)

= − lim
S↘T

logP (t,S) − logP (t,T )
S − T

= − lim
ε↘0

logP (t,T + ε) − logP (t,T )
ε

= − ∂

∂T
logP (t,T )

= − 1
P (t,T )

∂P

∂T
(t,T ).

□

The above equation (18.4) can be viewed as a differential equation to be
solved for logP (t,T ) under the initial condition P (T ,T ) = 1, which yields
the following proposition.
Proposition 18.3. The bond price P (t,T ) can be recovered from the instan-
taneous forward rate f(t, s) as

P (t,T ) = exp
(

−
w T
t
f(t, s)ds

)
, 0 ⩽ t ⩽ T . (18.5)
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Proof. We check that

logP (t,T ) = logP (t,T ) − logP (t, t)

=
w T
t

∂

∂s
logP (t, s)ds

= −
w T
t
f(t, s)ds.

□

Proposition 18.3 also shows that

f(t, t, t) = f(t, t)

=
∂

∂T

w T
t
f(t, s)ds|T=t

= − ∂

∂T
logP (t,T )|T=t

= − 1
P (t,T ) |T=t

∂P

∂T
(t,T )|T=t

= − 1
P (T ,T )

∂

∂T
E∗
[

e−
r T

t
rsds

∣∣∣ Ft
]

|T=t

= E∗
[
rT e−

r T
t
rsds

∣∣∣ Ft
]

|T=t

= E∗[rt | Ft]
= rt, (18.6)

i.e. the short rate rt can be recovered from the instantaneous forward rate
as

rt = f(t, t) = lim
T↘t

f(t,T ).

As a consequence of (18.1) and (18.5) the forward rate f(t,T ,S) can be
recovered from (18.2) and the instantaneous forward rate f(t, s), as:

f(t,T ,S) = logP (t,T ) − logP (t,S)
S − T

= − 1
S − T

(w T
t
f(t, s)ds−

w S
t
f(t, s)ds

)
=

1
S − T

w S
T
f(t, s)ds, 0 ⩽ t ⩽ T < S. (18.7)

Similarly, as a consequence of (18.3) and (18.5) we have the next proposition.
Proposition 18.4. The spot forward rate or yield f(t, t,T ) can be written
in terms of bond prices as
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f(t, t,T ) = − logP (t,T )
T − t

=
1

T − t

w T
t
f(t, s)ds, 0 ⩽ t < T . (18.8)

Differentiation with respect to T of the above relation shows that the yield
f(t, t,T ) and the instantaneous forward rate f(t, s) are linked by the relation

∂f

∂T
(t, t,T ) = − 1

(T − t)2

w T
t
f(t, s)ds+ 1

T − t
f(t,T ), 0 ⩽ t < T ,

from which it follows that

f(t,T ) = 1
T − t

w T
t
f(t, s)ds+ (T − t)

∂f

∂T
(t, t,T )

= f(t, t,T ) + (T − t)
∂f

∂T
(t, t,T ), 0 ⩽ t < T .

Forward Vašíček (1977) rates

In this section we consider the Vasicek model, in which the short rate process
is the solution (17.2) of (17.1) as illustrated in Figure 17.1.

In the Vasicek model, the forward rate is given by

f(t,T ,S) = − logP (t,S) − logP (t,T )
S − T

= −rt(C(S − t) −C(T − t)) +A(S − t) −A(T − t))

S − T

= −σ2 − 2ab
2b2

− 1
S − T

((
rt
b
+
σ2 − ab

b3

)(
e−(S−t)b − e−(T−t)b) − σ2

4b3
(

e−2(S−t)b − e−2(T−t)b)) ,

and the spot forward rate, or yield, satisfies

f(t, t,T ) = − logP (t,T )
T − t

= −rtC(T − t) +A(T − t)

T − t

= −σ2 − 2ab
2b2 +

1
T − t

((
rt
b
+
σ2 − ab

b3

)(
1 − e−(T−t)b) − σ2

4b3
(
1 − e−2(T−t)b)) ,

with the mean

E[f(t, t,T )]
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= −σ2 − 2ab
2b2 +

1
T − t

((
E[rt]

b
+
σ2 − ab

b3

)(
1 − e−(T−t)b) − σ2

4b3
(
1 − e−2(T−t)b))

= −σ2 − 2ab
2b2 +

1
T − t

(
r0
b

e−bt +
a

b2
(
1 − e−bt)+ σ2 − ab

b3

)(
1 − e−(T−t)b)

− σ2

4b3(T − t)

(
1 − e−2(T−t)b).

In this model, the forward rate t 7→ f(t, t,T ) can be represented as in the
following Figure 18.4, with a = 0.06, b = 0.1, σ = 0.1, r0 = %1 and T = 50.
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Fig. 18.4: Forward rate process t 7→ f(t, t, T ).

We note that the Vasicek forward rate curve t 7→ f(t, t,T ) appears flat for
small values of t, i.e. longer rates are more stable, while shorter rates show
higher volatility or risk. Similar features can be observed in Figure 18.5 for
the instantaneous short rate given by

f(t,T ) : = − ∂

∂T
logP (t,T ) (18.9)

= rt e−(T−t)b +
a

b

(
1 − e−(T−t)b)− σ2

2b2
(
1 − e−(T−t)b)2,

from which the relation limT↘t f(t,T ) = rt can be easily recovered. We can
also evaluate the mean

E[f(t,T )] = E[rt] e−(T−t)b +
a

b

(
1 − e−(T−t)b)− σ2

2b2
(
1 − e−(T−t)b)2

= r0 e−bT +
a

b

(
1 − e−bT )− σ2

2b2
(
1 − e−(T−t)b)2.

The instantaneous forward rate t 7→ f(t,T ) can be represented as in the
following Figure 18.5, with a = 0.06, b = 0.1, σ = 0.1 and r0 = %1.
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Fig. 18.5: Instantaneous forward rate process t 7→ f(t, T ).

Yield curve data

We refer to Chapter III-12 of Charpentier (2014) on the package “Yield-
Curve” Guirreri (2015) for the following code and further details on yield
curve and interest rate modeling using R.

 install.packages("YieldCurve");require(YieldCurve);data(FedYieldCurve)
first(FedYieldCurve,'3 month');last(FedYieldCurve,'3 month')

 mat.Fed=c(0.25,0.5,1,2,3,5,7,10);n=50
plot(mat.Fed, FedYieldCurve[n,], type="o",xlab="Maturities structure in years", ylab="Interest

rates values", col = "blue", lwd=3)
 title(main=paste("Federal Reserve yield curve observed at",time(FedYieldCurve[n], sep=" ")))

grid()

The next Figure 18.6 is plotted using this ∗ which is adapted from
https://www.quantmod.com/examples/chartSeries3d/chartSeries3d.alpha.R

∗ Click to open or download.
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require(YieldCurve);data(FedYieldCurve)
require(YieldCurve);data(FedYieldCurve)
Z <- FedYieldCurve[seq(2,nrow(FedYieldCurve),by=12),]
cnames <- c("3M","6M","1Y","2Y","3Y","5Y","7Y","10Y")
yred <- colorRampPalette(c("purple","blue"))
time.axis <- axTicksByTime(Z)
pm <- persp(z=Z,x=1:NROW(Z)*1.5,y=1:NCOL(Z),shade=0.30, ltheta=20,theta=30,col=rep(rep(yred(NCOL(Z))),each=(NROW(Z)-1)),scale=F, border=TRUE,box=FALSE)
x_axis <- seq(1, NROW(Z)*1.5, length.out=length(time.axis))
y_axis <- seq(1, NCOL(Z), length.out=NCOL(Z))
xy0 <- trans3d(x_axis,y_axis[1],0,pm)
xy1 <- trans3d(x_axis,y_axis[1]-0.3,0,pm)
lines(trans3d(x_axis,y_axis[1],0,pm),col="#555555")
segments(xy0$x,xy0$y,xy1$x,xy1$y, col="#555555")
text(xy1$x, xy1$y, labels=paste(names(time.axis)," "), pos=1, offset=.25,cex=0.74, srt=0)
xy0 <- trans3d(x_axis[length(x_axis)], y_axis, 0, pm)
xy1 <- trans3d(x_axis[length(x_axis)]+.4, y_axis, 0, pm)
yz0 <- trans3d(x_axis[length(x_axis)], y_axis, coredata(Z)[NROW(Z),seq(1,NCOL(Z))], pm) 
lines(trans3d(x_axis[length(x_axis)], y_axis, 0, pm),col="#555555")
segments(xy0$x,xy0$y,xy1$x,xy1$y,col="#555555")
text(xy1$x, xy1$y, labels=cnames, pos=4, offset=.7,cex=0.7)
segments(xy0$x,xy0$y,yz0$x,yz0$y, col="#555555") 
z_axis <- seq(trunc(min(Z,na.rm=TRUE)), round(max(Z, na.rm=TRUE)))
xy0 <- trans3d(x_axis[length(x_axis)], y_axis[length(y_axis)], z_axis, pm)
xy1 <- trans3d(x_axis[length(x_axis)]+0.96, y_axis[length(y_axis)], z_axis, pm)
lines(trans3d(x_axis[length(x_axis)], y_axis[length(y_axis)], z_axis, pm))
segments(xy0$x,xy0$y,xy1$x,xy1$y)
text(xy1$x, xy1$y, labels=paste(z_axis,'%     ',sep=''), pos=1, offset=-.65,cex=0.75)
invisible(pm)
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Fig. 18.6: Federal Reserve yield curves from 1982 to 2012.

European Central Bank (ECB) data can be similarly obtained by the next
code.

 data(ECBYieldCurve);first(ECBYieldCurve,'3 month');last(ECBYieldCurve,'3 month')
 mat.ECB<-c(3/12,0.5,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23, 24,25,26,27,28,

29,30)
dev.new(width=16,height=7)

 for (n in 200:400) {
plot(mat.ECB, ECBYieldCurve[n,], type="o",xlab="Maturity structure in years",

ylab="Interest rates values",ylim=c(3.1,5.1),col="blue",lwd=2,cex.axis=1.5,cex.lab=1.5)
 title(main=paste("European Central Bank yield curve observed at",time(ECBYieldCurve[n],

sep=" ")))
grid();Sys.sleep(0.5)}

The next Figure 18.7 represents the output of the above script.

Fig. 18.7: European Central Bank yield curves.∗

∗ The animation works in Acrobat Reader on the entire pdf file.
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Yield curve inversion

Increasing yield curves are typical of economic expansion phases. Decreasing
yield curves can occur when central banks attempt to limit inflation by tight-
ening interest rates, such as in the case of an economic recession, see .∗
In this case, uncertainty triggers increased investment in long bonds whose
rates tend to drop as a consequence, while reluctance to lend in the short
term can lead to higher short rates.

Fig. 18.8: August 2019 Federal Reserve yield curve inversion.†

The above Figure 18.8 illustrates a Federal Reserve (FED) yield curve inver-
sions occurring in February and August 2019.

LIBOR (London Interbank Offered) Rates

Recall that the forward rate f(t,T ,S), 0 ⩽ t ⩽ T ⩽ S, is defined using
exponential compounding, from the relation

f(t,T ,S) = logP (t,T ) − logP (t,S)
S − T

. (18.10)

In order to compute swaption prices one prefers to use forward rates as de-
fined on the London InterBank Offered Rates (LIBOR) market instead of
the standard forward rates given by (18.10). Other types of LIBOR rates in-
clude EURIBOR (European Interbank Offered Rates), HIBOR (Hong Kong
Interbank Offered Rates), SHIBOR (Shanghai Interbank Offered Rates), SI-
BOR (Singapore Interbank Offered Rates), TIBOR (Tokyo Interbank Offered
Rates), etc. Most LIBOR rates have been replaced by alternatives such as
∗ Right-click to open or save the attachment.
† The animation works in Acrobat Reader on the entire pdf file.
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What the Yield Curve Says About When
the Next Recession Could Happen


By Lauren Leatherby and Katherine Greifeld


15 August 2019


On Wednesday, 10-year Treasury yields fell below the rate on 2-year notes for the first time since


2007. The so-called yield curve inversion sent ripples through financial markets, spurring a near


3% drop in the S&P 500 while safe-haven currencies surged. “#TrumpRecession” was trending on


Twitter. The reason for alarm? Sustained inversions of the yield curve, especially the difference


between three-month bills and 10-year bonds, have preceded every recession since at least the


1960s.


Inversions have preceded recent recessions


View as spread


Sources: Bloomberg data, NBER
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Longer-maturity bonds tend to have a higher yield than shorter-term assets, as investors typically


demand more compensation to tie up their cash for longer periods and to offset the effects of


inflation. It’s a sign of optimism in the economy: Strong growth is expected to generate price


pressure. But a flatter curve indicates that markets are bracing for sluggish growth ahead, and the


curve between 3-month and 10-year yields has inverted before each of the past seven U.S.


recessions.


Time between recent inversions and economic recessions


 3-month, 10-year yield curve is inverted  Recession begins


Sources: Bloomberg data, NBER
The first inversion is counted as the first time the spread between 10-year Treasuries and 3-month bills goes negative
for more than four days at a time.


Despite its strong track record, whether an inverted yield curve is still a reliable predictor of a U.S.


downturn is up for debate after a decade of extraordinary central bank stimulus.


When the 10-year yield first fell beneath the three-month yield in March, many economists and


investors weren’t ready to sound the alarm. Previous inversion-recession links have come after


sustained periods of yield curve inversions, rather than a brief episode. For instance, the portion of


the yield curve that turned negative for a couple days in 1998 bounced back until a more


pronounced inversion began in July 2000. But after the short-lived bout in March of this year, the


3-month versus 10-year curve inverted again in May and has stayed that way for most of the


summer.


Even so, just because yield curve inversions have preceded recessions in the past doesn’t


necessarily mean this one will predict a recession in the future.


“I would really urge that on this occasion it may be a less good signal,” said former Federal Reserve


chair Janet Yellen on Fox Business Network’s WSJ at Large with Gerry Baker on Wednesday. “The


reason for that is that there are a number of factors other than market’s expectations about the


future path of interest rates that are pushing down long-term yields.”


And long-term yields are certainly falling. This week the rate on the 30-year bond, the U.S.’s longest


maturity, plunged to a fresh record low below 2%, or less than the Federal Reserve’s annual target


for inflation.


With assistance from Alex McIntyre
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the Secured Overnight Financing Rate (SOFR) starting with the end of year
2021, see below, page 656.

The forward LIBOR rate L(t,T ,S) for a loan on [T ,S] is defined by re-
placing exponential compounding with linear compounding in the argument
leading to (18.1), i.e. by replacing (18.10) with the relation

1 + (S − T )L(t,T ,S) = P (t,T )
P (t,S) , t ⩾ T , (18.11)

which yields the following definition.

Definition 18.5. The forward LIBOR rate L(t,T ,S) at time t for a loan
on [T ,S] is given by

L(t,T ,S) = 1
S − T

(
P (t,T )
P (t,S) − 1

)
, 0 ⩽ t ⩽ T < S. (18.12)

Note that (18.12) above yields the same formula for the (LIBOR) instanta-
neous forward rate

L(t,T ) : = lim
S↘T

L(t,T ,S)

= lim
S↘T

P (t,T ) − P (t,S)
(S − T )P (t,S)

= lim
ε↘0

P (t,T ) − P (t,T + ε)

εP (t,T + ε)

=
1

P (t,T ) lim
ε↘0

P (t,T ) − P (t,T + ε)

ε

= − 1
P (t,T )

∂P

∂T
(t,T )

= − ∂

∂T
logP (t,T )

= f(t,T ),

as in (18.4). In addition, Relation (18.12) shows that the LIBOR rate can be
viewed as a forward price X̂t = Xt/Nt with numéraire Nt = (S − T )P (t,S)
and Xt = P (t,T )−P (t,S), according to Relation (16.4) of Chapter 16. As a
consequence, from Proposition 16.4 we have the following result, which uses
the forward measure P̂S defined by its Radon-Nikodym density

dP̂S

dP∗ :=
1

P (0,S) e−
r S

0 rtdt, (18.13)

from the numéraire process Nt := P (t,S), t ∈ [0,S], see Definition 16.1.
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Proposition 18.6. The (simply compounded) LIBOR forward rate (L(t,T ,S))t∈[0,T ]
is a martingale under P̂S , i.e. we have

L(t,T ,S) = ÊS [L(T ,T ,S) | Ft], 0 ⩽ t ⩽ T .

SOFR (Secured Overnight Financing) Rates

The repurchase agreement (“repo”) market is a market where government
treasury securities can be borrowed on the short term. The SOFR rate is a
measure of the cost of borrowing which is estimated using overnight activity
on the repo market. In that sense, the SOFR, which is transaction-based,
differs from LIBOR which is relied on a survey of a panel of banks and
subject to manipulation. On the other hand, an important difference is that
LIBOR rates are forward-looking using a term structure, whereas SOFR rates
are backward-looking.

The next definition uses the integral convention
r b
a = −

r a
b , a < b.

Definition 18.7. The backward-looking bond price is defined for t ⩾ T as

P (t,T ) = E
[

e−
r T

t
rudu

∣∣∣Ft] = E
[

e
r t

T
rudu

∣∣∣Ft] = e
r t

T
rudu, t ⩾ T .

The forward SOFR rate R(t,T ,S) for a loan on [T ,S] is defined using linear
compounding by the same absence of arbitrage argument leading to (18.11),
as

1 + (S − T )R(t,T ,S) = P (t,T )
P (t,S) , 0 ⩽ T ⩽ t,

which yields the following definition.

Definition 18.8. The forward SOFR rate R(t,T ,S) at time t ∈ [T ,S] for
a loan on the time interval [T ,S] is given by

R(t,T ,S) = 1
S − T

(
P (t,T )
P (t,S) − 1

)
, 0 ⩽ T ⩽ t ⩽ S. (18.14)

We have

R(t,T ,S) = 1
S − T

(
e
r t

T
rudu

P (t,S) − 1
)

, 0 ⩽ T ⩽ t ⩽ S,

and in particular, the spot Effective Federal Funds Rate (EFFR) is given for
t = S as

R(S,T ,S) = 1
S − T

(
e
r S

T
rudu − 1

)
.
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The following proposition, see Rutkowski and Bickersteth (2021), uses the
forward S-measure P̂S defined by its Radon-Nikodym density (18.13).
Proposition 18.9. The SOFR forward rate (R(t,T ,S))t∈[T ,S] is a martin-
gale under P̂S , i.e. we have

R(t,T ,S) = ÊS [R(S,T ,S) | Ft] = ÊS

[
1

S − T

(
e
r S

T
rudu − 1

) ∣∣∣Ft] ,

T ⩽ t ⩽ S.

Proof. We have

R(t,T ,S) = 1
S − T

(
P (t,T )
P (t,S) − 1

)
=

1
S − T

(
e
r t

T
rudu

P (t,S) − 1
)

=
1

S − T

(
1

P (t,S)E
[

e
r t

T
rudu

∣∣∣Ft]− 1
)

=
1

S − T

(
1

P (t,S)E
[

e−
r S

t
rudu e

r S
T
rudu

∣∣∣Ft]− 1
)

=
1

S − T

(
ÊS

[
e
r S

T
rudu

∣∣∣Ft]− 1
)

=
1

S − T

(
ÊS [P (S,T ) | Ft] − 1

)
= ÊS [R(S,T ,S) | Ft], T ⩽ t ⩽ S.

□

18.2 LIBOR and SOFR Swap Rates

The first interest rate swap occurred in 1981 between the World Bank, which
was interested in borrowing German Marks and Swiss Francs, and IBM, which
already had large amounts of those currencies but needed to borrow U.S.
dollars.

The vanilla interest rate swap makes it possible to exchange a sequence of
variable LIBOR rates L(t,Tk,Tk+1), k = 1, 2, . . . ,n− 1, against a fixed rate
κ over a succession of time intervals [Ti,Ti+1), . . . , [Tj−1,Tj ] defining a tenor
structure, see Section 19.1 for details.

Making the agreement fair results into an exchange of cashflows

(Tk+1 − Tk)L(t,Tk,Tk+1)︸ ︷︷ ︸
floating leg

− (Tk+1 − Tk)κ︸ ︷︷ ︸
fixed leg

,
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at the dates Ti+1, . . . ,Tj between the two parties, therefore generating a
cumulative discounted cash flow

j−1∑
k=i

e−
r Tk+1

t rsds(Tk+1 − Tk)(L(t,Tk,Tk+1) − κ),

at time t = T0, in which we used simple (or linear) interest rate compounding.
This corresponds to a payer swap in which the swap holder receives the
floating leg and pays the fixed leg κ, whereas the holder of a seller swap
receives the fixed leg κ and pays the floating leg.

The above cash flow is used to make the contract fair, and it can be priced
at time t as

E∗
[
j−1∑
k=i

(Tk+1 − Tk) e−
r Tk+1

t rsds(L(t,Tk,Tk+1) − κ)
∣∣∣ Ft

]

=

j−1∑
k=i

(Tk+1 − Tk)(L(t,Tk,Tk+1) − κ)E∗
[

e−
r Tk+1

t rsds
∣∣∣ Ft

]

=

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)
(
L(t,Tk,Tk+1) − κ

)
. (18.15)

The swap rate S(t,Ti,Tj) is by definition the value of the rate κ that makes
the contract fair by making the above cash flow C(t) vanish.

Definition 18.10. The LIBOR swap rate S(t,Ti,Tj) is the value of the
break-even rate κ that makes the contract fair by making the cash flow (18.15)
vanish, i.e.

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)
(
L(t,Tk,Tk+1) − κ

)
= 0. (18.16)

The next Proposition 18.11 makes use of the annuity numéraire

P (t,Ti,Tj) := E∗
[
j−1∑
k=i

(Tk+1 − Tk) e−
r Tk+1

t rsds
∣∣∣ Ft

]
(18.17)

=

j−1∑
k=i

(Tk+1 − Tk)E
∗
[

e−
r Tk+1

t rsds

∣∣∣∣ Ft
]

=

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1), 0 ⩽ t ⩽ T2,
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which represents the present value at time t of future $1 receipts at times
Ti, . . . ,Tj , weighted by the lengths Tk+1 −Tk of the time intervals (Tk,Tk+1],
k = i, . . . , j − 1.

The time intervals (Tk+1 −Tk)k=i,...,j−1 in the definition (18.17) of the an-
nuity numéraire can be replaced by coupon payments (ck+1)k=i,...,j−1 occur-
ring at times (Tk+1)k=i,...,j−1, in which case the annuity numéraire becomes

P (t,Ti,Tj) := E∗
[
j−1∑
k=i

ck+1 e−
r Tk+1

t rsds

∣∣∣∣ Ft

]

=

j−1∑
k=i

ck+1E∗
[

e−
r Tk+1

t rsds
∣∣∣ Ft

]

=

j−1∑
k=i

ck+1P (t,Tk+1), 0 ⩽ t ⩽ Ti, (18.18)

which represents the value at time t of the future coupon payments discounted
according to the bond prices (P (t,Tk+1))k=i,...,j−1. This expression can also
be used to define amortizing swaps in which the value of the notional decreases
over time, or accreting swaps in which the value of the notional increases over
time.

LIBOR Swap rates

The LIBOR swap rate S(t,Ti,Tj) is defined by solving Relation (18.16) for
the forward rate S(t,Tk,Tk+1), i.e.

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)
(
L(t,Tk,Tk+1) − S(t,Ti,Tj)

)
= 0. (18.19)

Proposition 18.11. The LIBOR swap rate S(t,Ti,Tj) is given by

S(t,Ti,Tj) =
1

P (t,Ti,Tj)

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)L(t,Tk,Tk+1),

(18.20)

0 ⩽ t ⩽ Ti.

Proof. By definition, S(t,Ti,Tj) is the (fixed) break-even rate over [Ti,Tj ]
that will be agreed in exchange for the family of forward rates L(t,Tk,Tk+1),
k = i, . . . , j − 1, and it solves (18.19), i.e. we have
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j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)L(t,Tk,Tk+1) − P (t,Ti,Tj)S(t,Ti,Tj)

=

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)L(t,Tk,Tk+1)

−S(t,Ti,Tj)
j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)

=

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)L(t,Tk,Tk+1) − S(t,Ti,Tj)P (t,Ti,Tj)

= 0,

which shows (18.20) by solving the above equation for S(t,Ti,Tj) . □

The LIBOR swap rate S(t,Ti,Tj) is defined by the same relation as (18.16),
with the forward rate L(t,Tk,Tk+1) replaced with the LIBOR rate L(t,Tk,Tk+1).
In this case, using the Definition 18.12 of LIBOR rates we obtain the next
corollary.

Corollary 18.12. The LIBOR swap rate S(t,Ti,Tj) is given by

S(t,Ti,Tj) =
P (t,Ti) − P (t,Tj)

P (t,Ti,Tj)
, 0 ⩽ t ⩽ Ti. (18.21)

Proof. By (18.20), (18.12) and a telescoping summation argument we have

S(t,Ti,Tj) =
1

P (t,Ti,Tj)

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)L(t,Tk,Tk+1)

=
1

P (t,Ti,Tj)

j−1∑
k=i

P (t,Tk+1)

(
P (t,Tk)
P (t,Tk+1)

− 1
)

=
1

P (t,Ti,Tj)

j−1∑
k=i

(P (t,Tk) − P (t,Tk+1))

=
P (t,Ti) − P (t,Tj)

P (t,Ti,Tj)
. (18.22)

□

By (18.21), the bond prices P (t,Ti) can be recovered from the values of the
forward swap rates S(t,Ti,Tj).

Clearly, a simple expression for the swap rate such as that of Corol-
lary 18.12 cannot be obtained using the standard (i.e. non-LIBOR) rates
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defined in (18.10). Similarly, it will not be available for amortizing or accret-
ing swaps because the telescoping summation argument does not apply to
the expression (18.18) of the annuity numéraire.

When n = 2, the LIBOR swap rate S(t,T1,T2) coincides with the LIBOR
rate L(t,T1,T2), as from (18.18) we have

S(t,T1,T2) =
P (t,T1) − P (t,T2)

P (t,T1,T2)
(18.23)

=
P (t,T1) − P (t,T2)

(T2 − T1)P (t,T2)

= L(t,T1,T2).

Similarly to the case of LIBOR rates, Relation (18.21) shows that the LIBOR
swap rate can be viewed as a forward price with (annuity) numéraire Nt =
P (t,Ti,Tj) and Xt = P (t,Ti)−P (t,Tj). Consequently the LIBOR swap rate
(S(t,Ti,Tj)t∈[T ,S] is a martingale under the forward measure P̂ defined from
(16.1) by

dP̂

dP∗ =
P (Ti,Ti,Tj)
P (0,Ti,Tj)

e−
r Ti

0 rtdt.

SOFR Swap rate

The expressions

S(t,Ti,Tj) =
1

P (t,Ti,Tj)

j−1∑
k=i

(Tk+1 − Tk)P (t,Tk+1)R(t,Tk,Tk+1)

(18.24)

and

S(t,Ti,Tj) =
P (t,Ti) − P (t,Tj)

P (t,Ti,Tj)
, Ti ⩽ t ⩽ Tj , (18.25)

defining the SOFR swap rate S(t,Ti,Tj) are identical to the ones defining
the LIBOR swap rate in (18.20) and (18.21) by taking t ⩾ Ti in the case of
the SOFR swap rate.
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18.3 The HJM Model

In this section we turn to the modeling of instantaneous forward rate curves
in the HJM Model. From the beginning of this chapter we have started with
the modeling of the short rate (rt)t∈R+ , followed by its consequences on the
pricing of bonds P (t,T ) and on the expressions of the forward rates f(t,T ,S)
and L(t,T ,S).

In this section we choose a different starting point and consider the prob-
lem of directly modeling the instantaneous forward rate f(t,T ). The graph
given in Figure 18.9 presents a possible random evolution of a forward interest
rate curve using the Musiela convention, i.e. we will write

g(x) = f(t, t+ x) = f(t,T ), (18.26)

under the substitution x = T − t, x ⩾ 0, and represent a sample of the
instantaneous forward curve x 7→ f(t, t+ x) for each t ⩾ 0.
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Fig. 18.9: Stochastic process of forward curves.

Definition 18.13. In the Heath-Jarrow-Morton (HJM) model, the instan-
taneous forward rate f(t,T ) is modeled under P∗ by a stochastic differential
equation of the form

dtf(t,T ) = α(t,T )dt+ σ(t,T )dBt, 0 ⩽ t ⩽ T , (18.27)

where t 7→ α(t,T ) and t 7→ σ(t,T ), 0 ⩽ t ⩽ T , are allowed to be random,
(Ft)t∈[0,T ]-adapted, processes.

In the above equation, the date T is fixed and the differential dt is with
respect to the time variable t.

Under basic Markovianity assumptions, a HJM model with deterministic
coefficients α(t,T ) and σ(t,T ) will yield a short rate process (rt)t∈R+ of the
form

drt = (a(t) − b(t)rt)dt+ σ(t)dBt,
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see § 7.4 in Privault (2021b), which is the Hull and White (1990) model, with
the explicit solution

rt = rs e−
r t

s
b(τ )dτ +

w t
s

e−
r t

u
b(τ )dτa(u)du+

w t
s
σ(u) e−

r t
u
b(τ )dτdBu,

0 ⩽ s ⩽ t.

The HJM condition

How to “encode” absence of arbitrage in the defining HJM Equation (18.27)
is an important question. Recall that under absence of arbitrage, the bond
price P (t,T ) has been constructed as

P (t,T ) = E∗
[
exp

(
−
w T
t
rsds

) ∣∣∣ Ft
]
= exp

(
−
w T
t
f(t, s)ds

)
, (18.28)

cf. Proposition 18.3, hence the discounted bond price process is given by

t 7→ exp
(

−
w t

0
rsds

)
P (t,T ) = exp

(
−
w t

0
rsds−

w T
t
f(t, s)ds

)
(18.29)

is a martingale under P∗ by Proposition 17.1 and Relation (18.5) in Propo-
sition 18.3. This shows that P∗ is a risk-neutral probability measure, and by
the first fundamental theorem of asset pricing Theorem 5.7 we conclude that
the market is without arbitrage opportunities.
Proposition 18.14. (HJM Condition, Heath et al. (1992)). Under the con-
dition

α(t,T ) = σ(t,T )
w T
t
σ(t, s)ds, 0 ⩽ t ⩽ T , (18.30)

which is known as the HJM absence of arbitrage condition, the discounted
bond price process (18.29) is a martingale, and the probability measure P∗ is
risk-neutral.
Proof. Using the process (Xt)t∈[0,T ] defined as

Xt :=
w T
t
f(t, s)ds = − logP (t,T ), 0 ⩽ t ⩽ T ,

such that P (t,T ) = e−Xt , we rewrite the spot forward rate, or yield

f(t, t,T ) = 1
T − t

w T
t
f(t, s)ds,

see (18.8), as
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f(t, t,T ) = 1
T − t

w T
t
f(t, s)ds = Xt

T − t
, 0 ⩽ t ⩽ T ,

where the dynamics of t 7→ f(t, s) is given by (18.27). We also use the ex-
tended Leibniz integral rule

dt
w T
t
f(t, s)ds = −f(t, t)dt+

w T
t
dtf(t, s)ds = −rtdt+

w T
t
dtf(t, s)ds,

see (18.6). This identity can be checked in the particular case where f(t, s) =
g(t)h(s) is a smooth function that satisfies the separation of variables prop-
erty, as

dt

(w T
t
g(t)h(s)ds

)
= dt

(
g(t)

w T
t
h(s)ds

)
=

w T
t
h(s)dsdg(t) + g(t)dt

w T
t
h(s)ds

= g′(t)

(w T
t
h(s)ds

)
dt− g(t)h(t)dt.

We have

dtXt = dt
w T
t
f(t, s)ds

= −f(t, t)dt+
w T
t
dtf(t, s)ds

= −f(t, t)dt+
w T
t
α(t, s)dsdt+

w T
t
σ(t, s)dsdBt

= −rtdt+
(w T

t
α(t, s)ds

)
dt+

(w T
t
σ(t, s)ds

)
dBt,

hence
|dtXt|2 =

(w T
t
σ(t, s)ds

)2
dt.

By Itô’s calculus, we find

dtP (t,T ) = dt e−Xt

= − e−XtdtXt +
1
2 e−Xt(dtXt)

2

= − e−XtdtXt +
1
2 e−Xt

(w T
t
σ(t, s)ds

)2
dt

= − e−Xt

(
−rtdt+

w T
t
α(t, s)dsdt+

w T
t
σ(t, s)dsdBt

)
+

1
2 e−Xt

(w T
t
σ(t, s)ds

)2
dt,
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and the discounted bond price satisfies

dt

(
exp

(
−
w t

0
rsds

)
P (t,T )

)
= −rt exp

(
−
w t

0
rsds−Xt

)
dt+ exp

(
−
w t

0
rsds

)
dtP (t,T )

= −rt exp
(

−
w t

0
rsds−Xt

)
dt− exp

(
−
w t

0
rsds−Xt

)
dtXt

+
1
2 exp

(
−
w t

0
rsds−Xt

)(w T
t
σ(t, s)ds

)2
dt

= −rt exp
(

−
w t

0
rsds−Xt

)
dt

− exp
(

−
w t

0
rsds−Xt

)(
−rtdt+

w T
t
α(t, s)dsdt+

w T
t
σ(t, s)dsdBt

)
+

1
2 exp

(
−
w t

0
rsds−Xt

)(w T
t
σ(t, s)ds

)2
dt

= − exp
(

−
w t

0
rsds−Xt

)w T
t
σ(t, s)dsdBt

− exp
(

−
w t

0
rsds−Xt

)(w T
t
α(t, s)ds− 1

2

(w T
t
σ(t, s)ds

)2
)
dt.

Thus, the discounted bond price process

t 7→ exp
(

−
w t

0
rsds

)
P (t,T )

will be a martingale provided that

w T
t
α(t, s)ds− 1

2

(w T
t
σ(t, s)ds

)2
= 0, 0 ⩽ t ⩽ T . (18.31)

Differentiating the above relation with respect to T yields

α(t,T ) = σ(t,T )
w T
t
σ(t, s)ds,

which is in fact equivalent to (18.31). □

Forward Vasicek rates in the HJM model

The HJM coefficients in the Vasicek model are in fact deterministic, for ex-
ample, taking a = 0, by (18.9) we have
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dtf(t,T ) = σ2 e−(T−t)b
w T
t

e(t−s)bdsdt+ σ e−(T−t)bdBt,

i.e.

α(t,T ) = σ2 e−(T−t)b
w T
t

e(t−s)bds = σ2 e−(T−t)b 1 − e−(T−t)b

b
,

and σ(t,T ) = σ e−(T−t)b, and the HJM condition reads

α(t,T ) = σ2 e−(T−t)b
w T
t

e(t−s)bds = σ(t,T )
w T
t
σ(t, s)ds. (18.32)

Random simulations of the Vasicek instantaneous forward rates are provided
in Figures 18.10 and 18.11 using the Musiela convention (18.26).

Fig. 18.10: Forward instantaneous curve (t, x) 7→ f(t, t + x) in the Vasicek model.∗

Fig. 18.11: Forward instantaneous curve x 7→ f(0, x) in the Vasicek model.†
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For x = 0 the first “slice” of this surface is actually the short rate Vasicek
process rt = f(t, t) = f(t, t+ 0) which is represented in Figure 18.12 using
another discretization.
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Fig. 18.12: Short-term interest rate curve t 7→ rt in the Vasicek model.

HJM-SOFR Model

In the HJM-SOFR model, the instantaneous forward rate f(t,T ) is extended
to t > T by taking

dtf(t,T ) = 1[0,T ](t)α(t,T )dt+ 1[0,T ](t)σ(t,T )dBt, t ⩾ T ,

i.e.
f(t,T ) = f(T ,T ) = rT , t ⩾ T ,

see Lyashenko and Mercurio (2020).

18.4 Yield Curve Modeling

Nelson-Siegel parametrization of instantaneous forward rates

In the Nelson and Siegel (1987) parametrization the instantaneous forward
rate curves are parametrized by 4 coefficients z1, z2, z3, z4, as

g(x) = z1 + (z2 + z3x) e−xz4 , x ⩾ 0.

An example of graph of forward rate f(t,T ,T + x) = g(x) obtained by the
Nelson-Siegel parametrization is given in Figure 18.13, for z1 = 1, z2 = −10,
z3 = 100, z4 = 10.
† The animation works in Acrobat Reader on the entire pdf file.
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Fig. 18.13: Graph of x 7→ g(x) in the Nelson-Siegel model.

Svensson parametrization of instantaneous forward rates

The Svensson (1994) parametrization has the advantage to reproduce two
humps instead of one, the location and height of which can be chosen via 6
parameters z1, z2, z3, z4, z5, z6 as

g(x) = z1 + (z2 + z3x) e−xz4 + z5x e−xz6 , x ⩾ 0.

An typical example of graph of forward rate f(t,T ,T +x) = g(x) obtained by
the Svensson parametrization is given in Figure 18.14, for z1 = 6.6, z2 = −5,
z3 = −100, z4 = 10, z5 = −1/2, z6 = 1.
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Fig. 18.14: Graph of x 7→ g(x) in the Svensson model.

Figure 18.15 presents a fit of the market data of Figure 18.1 using a Svensson
curve.
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Fig. 18.15: Fitting of a Svensson curve to market data.

The attached can be run here or here to fit a Svensson
curve to market data.

Vasicek parametrization

In the Vasicek model, the instantaneous forward rate process is given from
(18.9) and (18.26) as

f(t,T ) = a

b
− σ2

2b2 +

(
rt − a

b
+
σ2

b2

)
e−bx − σ2

2b2 e−2bx, (18.33)

in the Musiela notation (x = T − t), and we have

∂f

∂T
(t,T ) =

(
a− brt − σ2

b
(1 − e−(T−t)b)

)
e−(T−t)b.

We check that the derivative ∂f/∂T vanishes when a − brt + a − σ2(1 −
e−bx)/b = 0, i.e.

e−bx = 1 + b

σ2 (brt − a),

which admits at most one solution, provided that a > brt. As a consequence,
the possible forward curves in the Vasicek model are limited to one change
of “regime” per curve, as illustrated in Figure 18.16 for various values of rt,
and in Figure 18.17.
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Fig. 18.16: Graphs of forward rates with b = 0.16, a/b = 0.04, r0 = 2%, σ = 4.5%.

The next Figure 18.17 is also using the parameters b = 0.16, a/b = 0.04,
r0 = 2%, and σ = 4.5%.
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Fig. 18.17: Forward instantaneous curve (t, x) 7→ f(t, t + x) in the Vasicek model.

One may think of constructing an instantaneous forward rate process taking
values in the Svensson space, however this type of modeling is not consistent
with absence of arbitrage, and it can be proved that the HJM curves cannot
live in the Nelson-Siegel or Svensson spaces, see §3.5 of Björk (2004b). In
other words, it can be shown that the forward yield curves produced by
the Vasicek model are included neither in the Nelson-Siegel space, nor in
the Svensson space. In addition, the Vasicek yield curves do not appear to
correctly model the market forward curves cf. also Figure 18.1 above.

Another way to deal with the curve fitting problem is to use deterministic
shifts for the fitting of one forward curve, such as the initial curve at t = 0,
cf. e.g. § 6.3 in Privault (2021b).

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forward
rate curves are parametrized by four coefficients z1, z2, z3, z4, as
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f(t, t+ x) = z1 + (z2 + z3x) e−xz4 , x ⩾ 0. (18.34)

Taking x = T − t, the yield f(t, t,T ) is given from (18.7) as

f(t, t,T ) = 1
T − t

w T
t
f(t, s)ds

=
1
x

w x
0
f(t, t+ y)dy

= z1 +
z2
x

w x
0

e−yz4dy+
z3
x

w x
0
y e−yz4dy

= z1 + z2
1 − e−xz4

xz4
+ z3

1 − e−xz4 + x e−xz4

xz4
.

The yield f(t, t,T ) can then be reparametrized as

f(t, t+ x) = z1 + (z2 + z3x) e−xz4 = β0 + β1 e−x/λ +
β2
λ
x e−x/λ, x ⩾ 0,

see Charpentier (2014), with β0 = z1, β1 = z2, β2 = z3/z4, λ = 1/z4, and
similarly in the Svensson model.

 require(YieldCurve);data(ECBYieldCurve)
mat.ECB<-c(3/12,0.5,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,

24,25,26,27,28,29,30)
 first(ECBYieldCurve, '1 month');Nelson.Siegel(first(ECBYieldCurve, '1 month'), mat.ECB)

 for (n in seq(from=70, to=290, by=10)) {
ECB.NS <- Nelson.Siegel(ECBYieldCurve[n,], mat.ECB)

 ECB.S <- Svensson(ECBYieldCurve[n,], mat.ECB)
ECB.NS.yield.curve <- NSrates(ECB.NS, mat.ECB)

 ECB.S.yield.curve <- Srates(ECB.S, mat.ECB,"Spot")
plot(mat.ECB, as.numeric(ECBYieldCurve[n,]), type="o", lty=1, col=1,ylab="Interest rates",

xlab="Maturity in years", ylim=c(3.2,4.8),cex.lab=1.6,cex.axis=1.6)
 lines(mat.ECB, as.numeric(ECB.NS.yield.curve), type="l", lty=3,col=2,lwd=2)

lines(mat.ECB, as.numeric(ECB.S.yield.curve), type="l", lty=2,col=6,lwd=2)
 title(main=paste("ECB yield curve observed at",time(ECBYieldCurve[n], sep=" "),"vs fitted

yield curve"))
legend('bottomright', legend=c("ECB data","Nelson-Siegel","Svensson"),col=c(1,2,6), lty=1,

bg='gray90')
 grid();}
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Fig. 18.18: ECB data vs. fitted yield curve.∗

18.5 Two-Factor Model

The correlation problem is another issue of concern when using the affine
models considered so far, see (17.9) and (17.28). Let us compare three bond
price simulations with maturity T1 = 10, T2 = 20, and T3 = 30 based on the
same Brownian path, as given in Figure 18.19. Clearly, the bond prices

F (rt,Ti) = P (t,Ti) = eA(t,Ti)+rtC(t,Ti), 0 ⩽ t ⩽ Ti, i = 1, 2,

with maturities T1 and T2 are linked by the relation

P (t,T2) = P (t,T1) exp
(
A(t,T2) −A(t,T1) + rt(C(t,T2) −C(t,T1))

)
,

(18.35)
meaning that bond prices with different maturities could be deduced from
each other, which is unrealistic.
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Fig. 18.19: Graph of t 7→ P (t, T1), P (t, T2), P (t, T3).

∗ The animation works in Acrobat Reader on the entire pdf file.
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In affine short rate models, by (18.35), logP (t,T1) and logP (t,T2) are linked
by the affine relationship

logP (t,T2) = logP (t,T1) +A(t,T2) −A(t,T1) + rt(C(t,T2) −C(t,T1))

= logP (t,T1) +A(t,T2) −A(t,T1) + (C(t,T2) −C(t,T1))
logP (t,T1) −A(t,T1)

C(t,T1)

=

(
1 + C(t,T2) −C(t,T1)

A(t,T1)

)
logP (t,T1) +A(t,T2) −A(t,T1)

C(t,T2)

C(t,T1)

with constant coefficients, which yields the perfect correlation or anticorrela-
tion

Cor(logP (t,T1), logP (t,T2)) = ±1,

depending on the sign of the coefficient 1 + (C(t,T2) − C(t,T1))/A(t,T1),
cf. § 6.4 in Privault (2021b),

A solution to the correlation problem is to consider a two-factor model
based on two state processes (Xt)t∈R+ , (Yt)t∈R+ which are solution of

dXt = µ1(t,Xt)dt+ σ1(t,Xt)dB
(1)
t ,

dYt = µ2(t,Yt)dt+ σ2(t,Yt)dB(2)
t ,

(18.36)

where
(
B

(1)
t

)
t∈R+

,
(
B

(2)
t

)
t∈R+

are correlated Brownian motion, with

Cov
(
B

(1)
s ,B(2)

t

)
= ρmin(s, t), s, t ⩾ 0, (18.37)

and
dB

(1)
t

• dB
(2)
t = ρdt, (18.38)

for some correlation parameter ρ ∈ [−1, 1]. In practice,
(
B

(1)
t

)
t∈R+

and(
B

(2)
t

)
t∈R+

can be constructed from two independent Brownian motions(
W

(1)
t

)
t∈R+

and
(
W

(2)
t

)
t∈R+

, by letting
B

(1)
t = W

(1)
t ,

B
(2)
t = ρW

(1)
t +

√
1 − ρ2W

(2)
t , t ⩾ 0,

and Relations (18.37) and (18.38) are easily satisfied from this construction.

In two-factor models one chooses to build the short-term interest rate rt via

rt := Xt + Yt, t ⩾ 0.
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By the previous standard arbitrage arguments we define the price of a bond
with maturity T as

P (t,T ) : = E∗
[
exp

(
−
w T
t
rsds

) ∣∣∣ Ft
]

= E∗
[
exp

(
−
w T
t
rsds

) ∣∣∣ Xt, Yt
]

= E∗
[
exp

(
−
w T
t
(Xs + Ys)ds

) ∣∣∣ Xt, Yt
]

= F (t,Xt,Yt), (18.39)

since the couple (Xt,Yt)t∈R+ is Markovian. Applying the Itô formula with

two variables to

t 7→ F (t,Xt,Yt) = P (t,T ) = E∗
[
exp

(
−
w T
t
rsds

) ∣∣∣ Ft
]

,

and using the fact that the discounted process

t 7→ e−
r t

0 rsdsP (t,T ) = E∗
[
exp

(
−
w T

0
rsds

) ∣∣∣ Ft
]

is an Ft-martingale under P∗, we can derive the PDE

−(x+ y)F (t,x, y) + µ1(t,x)
∂F

∂x
(t,x, y) + µ2(t, y)

∂F

∂y
(t,x, y)

+
1
2σ

2
1(t,x)

∂2F

∂x2 (t,x, y) + 1
2σ

2
2(t, y)

∂2F

∂y2 (t,x, y)

+ρσ1(t,x)σ2(t, y)
∂2F

∂x∂y
(t,x, y) + ∂F

∂t
(t,x, y) = 0, (18.40)

on R2 for the bond price P (t,T ). In the Vasicek model
dXt = −aXtdt+ σdB

(1)
t ,

dYt = −bYtdt+ ηdB
(2)
t ,

this yields the solution F (t,x, y) of (18.40) as

P (t,T ) = F (t,Xt,Yt) = F1(t,Xt)F2(t,Yt) exp (ρU(t,T )) , (18.41)

where F1(t,Xt) and F2(t,Yt) are the bond prices associated to Xt and Yt in
the Vasicek model, and
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U(t,T ) :=
ση

ab

(
T − t+

e−(T−t)a − 1
a

+
e−(T−t)b − 1

b
− e−(a+b)(T−t) − 1

a+ b

)

is a correlation term which vanishes when
(
B

(1)
t

)
t∈R+

and
(
B

(2)
t

)
t∈R+

are
independent, i.e. when ρ = 0, cf. Ch. 4, Appendix A in Brigo and Mercurio
(2006), § 6.5 of Privault (2021b).

Partial differentiation of logP (t,T ) with respect to T leads to the instanta-
neous forward rate

f(t,T ) = f1(t,T ) + f2(t,T ) − ρ
ση

ab

(
1 − e−(T−t)a)(1 − e−(T−t)b), (18.42)

where f1(t,T ), f2(t,T ) are the instantaneous forward rates corresponding to
Xt and Yt respectively, cf. § 6.5 of Privault (2021b).

An example of a forward rate curve obtained in this way is given in Fig-
ure 18.20.
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Fig. 18.20: Graph of forward rates in a two-factor model.

Next, in Figure 18.21 we present a graph of the evolution of forward curves
in a two-factor model.
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Fig. 18.21: Random evolution of instantaneous forward rates in a two-factor model.

" 675

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

18.6 The BGM Model

The models (HJM, affine, etc.) considered in the previous chapter suffer from
various drawbacks such as nonpositivity of interest rates in Vasicek model,
and lack of closed-form solutions in more complex models. The Brace et al.
(1997) (BGM) model has the advantage of yielding positive interest rates,
and to permit to derive explicit formulas for the computation of prices for in-
terest rate derivatives such as interest rate caps and swaptions on the LIBOR
market.

In the BGM model we consider two bond prices P (t,T1), P (t,T2) with ma-
turities T1, T2, and the forward probability measure P̂2 defined as

dP̂2
dP∗ =

e−
r T2

0 rsds

P (0,T2)
,

with numéraire P (t,T2), cf. (16.10). The forward LIBOR rate L(t,T1,T2) is
modeled as a driftless geometric Brownian motion under P̂2, i.e.

dL(t,T1,T2)

L(t,T1,T2)
= γ1(t)dBt, (18.43)

0 ⩽ t ⩽ T1, for some deterministic volatility function of time γ1(t), with
solution

L(u,T1,T2) = L(t,T1,T2) exp
(w u

t
γ1(s)dBs − 1

2
w u
t

|γ1|2(s)ds
)

,

i.e. for u = T1,

L(T1,T1,T2) = L(t,T1,T2) exp
(w T1

t
γ1(s)dBs − 1

2
w T1

t
|γ1|2(s)ds

)
.

Since L(t,T1,T2) is a geometric Brownian motion under P̂2, standard caplets
can be priced at time t ∈ [0,T1] from the Black-Scholes formula.

In Table 18.1 we summarize some stochastic models used for interest rates.

Model
Short rate rt Mean reverting SDEs
Instantaneous forward rate f(t, s) HJM model
Forward rate f(t, T , S) BGM model

Table 18.1: Stochastic interest rate models.
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The following Graph 18.22 summarizes the notions introduced in this chapter.

Short rate1 rt

Short rate
rt = f(t, t) = f(t, t, t)

Bond price2

P (t, T ) = IE∗
[
e−

r T
t rsds | Ft

]

LIBOR rate3

L(t, T, S) = P (t,T )−P (t,S)
(S−T )P (t,S)

Swap rate
S(t, T1, Tn) =

P (t,T1)−P (t,Tn)
P (t,T1,Tn)

Forward rate3

f(t, T, S) = logP (t,T )−logP (t,S)
S−T

Instantaneous forward rate4

f(t, T ) = L(t, T ) = limS↘T f(t, T, S)
= limS↘T L(t, T, S)

Bond price

P (t, T ) = e−
r T
t f(t,s)ds

Bond price
P (t, T ) = e−(T−t)f(t,t,T )

Instantaneous forward rate4

f(t, T ) = L(t, T ) = −∂ logP (t,T )
∂T

Spot forward rate (yield)

f(t, t, T ) =
r T
t f(t, s)ds/(T − t)

1Can be modeled by Vasiçek and other short rate models
2Can be modeled from dP (t, T )/P (t, T ).
3Can be modeled in the BGM model
4Can be modeled in the HJM model

Fig. 18.22: Roadmap of stochastic interest rate modeling.

Exercises

Exercise 18.1 We consider a bond with maturity T , priced P (t,T ) =

E∗
[

e−
r T

t
rsds

∣∣∣ Ft
]

at time t ∈ [0,T ].

a) Using the forward measure P̂ with numéraire Nt = P (t,T ), apply the
change of numéraire formula (16.9) to compute the derivative ∂P

∂T
(t,T ).

b) Using Relation (18.5), find an expression of the instantaneous forward
rate f(t,T ) using the short rate rT and the forward expectation Ê.

c) Show that the instantaneous forward rate (f(t,T ))t∈[0,T ] is a martingale
under the forward measure P̂.
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Exercise 18.2 Consider a tenor structure {T1,T2} and a bond with maturity
T2 and price given at time t ∈ [0,T2] by

P (t,T2) = exp
(

−
w T2

t
f(t, s)ds

)
, t ∈ [0,T2],

where the instantaneous yield curve f(t, s) is parametrized as

f(t, s) = r11[0,T1](s) + r21[T1,T2](s), t ⩽ s ⩽ T2.

Find a formula to estimate the values of r1 and r2 from the data of P (0,T2)
and P (T1,T2).
Same question when f(t, s) is parametrized as

f(t, s) = r1s1[0,T1](s) + (r1T1 + (s− T1)r2)1[T1,T2](s), t ⩽ s ⩽ T2.

Exercise 18.3 (El Karoui et al. (1997)) Consider a short term interest rate
process (rt)t∈[0,T ] and a bond priced P (t,T ) at time t ∈ [0,T ].
a) Using Jensen’s inequality, find an inequality between

a) the yield y(t,T ) = f(t, t,T ), and
b) the average short rate 1

T − t

w T
t
rsds.

b) Show that in the Vasicek model in which the short-term interest rate
process (rt)t∈R+ solves the equation

drt = (a− brt)dt+ σdBt, (18.44)

where a,σ ∈ R, b > 0, and (Bt)t∈R+ is a standard Brownian motion, we
have

lim
T→∞

1
T − t

w T
t

E[rs | Ft]ds =
a

b
t ⩾ 0,

and
lim
T→∞

y(t,T ) = a

b
− σ2

2b2 .

Exercise 18.4 (Exercise 4.17 continued). Bridge model. Assume that the
price P (t,T ) of a zero-coupon bond with maturity T > 0 is modeled as

P (t,T ) = e−µ(T−t)+XT
t , t ∈ [0,T ],

where (XT
t )t∈[0,T ) is the solution of the stochastic differential equation

dXT
t = σdBt − XT

t

T − t
dt, t ∈ [0,T ),
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under the initial condition XT
0 = 0, i.e.

XT
t = (T − t)

w t
0

σ

T − s
dBs, 0 ⩽ t < T ,

with µ,σ > 0.

a) Show that the terminal condition P (T ,T ) = 1 is satisfied.
b) Compute the forward rate

f(t,T ,S) = − 1
S − T

(logP (t,S) − logP (t,T )).

c) Compute the instantaneous forward rate

f(t,T ) = − lim
S↘T

1
S − T

(logP (t,S) − logP (t,T )).

d) Show that the limit lim
T↘t

f(t,T ) does not exist in L2(Ω).

e) Show that P (t,T ) satisfies the stochastic differential equation

dP (t,T )
P (t,T ) = σdBt +

σ2

2 dt− logP (t,T )
T − t

dt, t ∈ [0,T ].

f) Rewrite the equation of Question (e) as

dP (t,T )
P (t,T ) = σdBt + rTt dt, t ∈ [0,T ],

where (rT
t )t∈[0,T ] is a process to be determined.

g) Show that we have the expression

P (t,T ) = E∗
[

e−
r T

t
rT

s ds
∣∣∣Ft] , 0 ⩽ t ⩽ T .

h) Compute the conditional Radon-Nikodym density

E∗
[

dP̂T

dP∗

∣∣∣∣Ft
]
=
P (t,T )
P (0,T ) e−

r t
0 r

T
s ds

of the forward measure P̂T with respect to P∗.
i) Show that the process

B̂t := Bt − σt, 0 ⩽ t ⩽ T ,

is a standard Brownian motion under P̂T .
j) Compute the dynamics of XS

t and P (t,S) under P̂T .
Hint: Show that
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−µ(S − T ) + σ(S − T )
w t

0
1

S − s
dBs =

S − T

S − t
logP (t,S).

k) Compute the bond option price

E∗
[

e−
r T

t
rT

s ds(P (T ,S) −K)+
∣∣∣ Ft

]
= P (t,T )ÊT

[
(P (T ,S)−K)+

∣∣ Ft
]
,

0 ⩽ t < T < S.

Hint: Given X a Gaussian random variable with mean m and variance v2

given Ft, we have:

E
[(

eX − κ
)+ | Ft

]
= em+v2/2Φ

(
1
v
(m+ v2 − log κ)

)
−κΦ

(
1
v
(m− log κ)

)
.

Exercise 18.5 Consider a short rate process (rt)t∈R+ of the form rt =
h(t) +Xt, where h(t) is a deterministic function of time and (Xt)R+ is a
Vasicek process started at X0 = 0.

a) Compute the price P (0,T ) at time t = 0 of a bond with maturity T , using
h(t) and the function A(T ) defined in (17.35) for the pricing of Vasicek
bonds.

b) Show how the function h(t) can be estimated from the market data of the
initial instantaneous forward rate curve f(0, t).

Exercise 18.6 (Exercise 4.14 continued). Consider two assets whose prices
S
(1)
t , S(2)

t at time t ∈ [0,T ] follow the Bachelier dynamics

dS
(1)
t = rS

(1)
t dt+ σ1dW

(1)
t dS

(2)
t = rS

(2)
t dt+ σ2dW

(2)
t t ∈ [0,T ],

where
(
W

(1)
t

)
t∈[0,T ],

(
W

(2)
t

)
t∈[0,T ] are two standard Brownian motions with

correlation ρ ∈ [−1, 1] under a risk-neutral probability measure P∗.

Compute the price e−rTE∗[(ST −K)+] of the spread option on ST :=
S
(2)
T − S

(1)
T with maturity T > 0 and strike price K > 0.

Exercise 18.7

a) Given two LIBOR spot rates R(t, t,T ) and R(t, t,S), express the LIBOR
forward rate R(t,T ,S) in terms of R(t, t,T ) and R(t, t,S).

b) Assuming t = 0, T = 1 year, S = 2 years, R(0, 0,T ) = 2%, R(0, 0,S) =
2.5% would you sign a LIBOR forward rate agreement at t = 0 with rate
R(0,T ,S) over [T ,S] if you believe that R(T ,T ,S) will remain at the
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level R(T ,T ,S) = R(0, 0,T ) = 2%?

Exercise 18.8 Consider a bond market with two bonds with maturities T ,
S, whose prices P (t,T ),P (t,S) at time t are given by

dP (t,T )
P (t,T ) = rtdt+ ζT (t)dWt,

dP (t,S)
P (t,S) = rtdt+ ζS(t)dWt,

where (rt)t∈R+ is a short-term interest rate process, (Wt)t∈R+ is a stan-
dard Brownian motion generating a filtration (Ft)t∈R+ , and ζT (t), ζS(t) are
volatility processes. Compute the coefficients µt and σt in the stochastic dif-
ferential equation

dL(t,T ,S)
L(t,T ,S) = µtdt+ σtdWt

satisfied by the LIBOR rate

L(t,T ,S) :=
P (t,T ) − P (t,S)

P (t,S) .

Exercise 18.9 (Exercise 17.5 continued).
a) Compute the forward rate f(t,T ,S) in the Ho-Lee model (17.50) with

constant deterministic volatility.
In the next questions we take a = 0.

b) Compute the instantaneous forward rate f(t,T ) in this model.
c) Derive the stochastic equation satisfied by the instantaneous forward rate

f(t,T ).
d) Check that the HJM absence of arbitrage condition is satisfied in this

equation.

Exercise 18.10 Consider the two-factor Vasicek model
dXt = −bXtdt+ σdB

(1)
t ,

dYt = −bYtdt+ σdB
(2)
t ,

where
(
B

(1)
t

)
t∈R+

,
(
B

(2)
t

)
t∈R+

are correlated Brownian motion such that

dB
(1)
t

• dB
(2)
t = ρdt, for ρ ∈ [−1, 1].

a) Write down the expressions of the short rates Xt and Yt.
Hint: They can be found in Section 17.1.

b) Compute the variances Var[Xt], Var[Yt], and the covariance Cov(Xt,Yt).
Hint: The expressions of Var[Xt] and Var[Yt] can be found in Section 17.1.
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c) Compute the covariance Cov(logP (t,T1), logP (t,T2)) for the two-factor
bond prices

P (t,T1) = F1(t,Xt,T1)F2(t,Yt,T1) eρU(t,T1)

and
P (t,T2) = F1(t,Xt,T2)F2(t,Yt,T2) eρU(t,T2),

where

logF1(t,x,T ) = CT1 + xAT1 and logF2(t,x) = CT2 + xAT2 .

Hint: We have Cov(X+Y ,Z) = Cov(X,Z)+Cov(Y ,Z) and Cov(c,X) =
0 when c is a constant.

Exercise 18.11 Stochastic string model (Santa-Clara and Sornette (2001)).
Consider an instantaneous forward rate f(t,x) solution of

dtf(t,x) = αx2dt+ σdtB(t,x), (18.45)

with a flat initial curve f(0,x) = r, where x represents the time to maturity,
and (B(t,x))(t,x)∈R2

+
is a standard Brownian sheet with covariance

E[B(s,x)B(t, y)] = (min(s, t))(min(x, y)), s, t,x, y ⩾ 0, (18.46)

and initial conditions B(t, 0) = B(0,x) = 0 for all t,x ⩾ 0.

a) Solve the equation (18.45) for f(t,x).
b) Compute the short-term interest rate rt = f(t, 0).
c) Compute the value at time t ∈ [0,T ] of the bond price

P (t,T ) = exp
(

−
w T−t

0
f(t,x)dx

)
with maturity T .

d) Compute the variance E

[(w T−t

0
B(t,x)dx

)2 ]
of the centered Gaussian

random variable
r T−t
0 B(t,x)dx.

e) Compute the expected value E∗[P (t,T )].
f) Find the value of α such that the discounted bond price

e−rtP (t,T ) = exp
(

−rT − α

3 t(T − t)3 − σ
w T−t

0
B(t,x)dx

)
, t ∈ [0,T ].

satisfies E∗[P (t,T )] = e−(T−t)r.
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g) Compute the bond option price E∗
[
exp

(
−
w T

0
rsds

)
(P (T ,S) −K)+

]
by the Black-Scholes formula, knowing that for any centered Gaussian
random variable X ≃ N (0, v2) with variance v2 we have

E[(x em+X −K)+]

= x em+v2/2Φ(v+ (m+ log(x/K))/v) −KΦ((m+ log(x/K))/v).

" 683

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

	pbs@ARFix@669: 
	pbs@ARFix@670: 
	pbs@ARFix@671: 
	pbs@ARFix@672: 
	pbs@ARFix@673: 
	pbs@ARFix@674: 
	pbs@ARFix@675: 
	pbs@ARFix@676: 
	pbs@ARFix@677: 
	42.0: 
	42.1: 
	42.2: 
	42.3: 
	42.4: 
	42.5: 
	42.6: 
	42.7: 
	42.8: 
	42.9: 
	42.10: 
	42.11: 
	42.12: 
	42.13: 
	42.14: 
	42.15: 
	42.16: 
	42.17: 
	42.18: 
	42.19: 
	42.20: 
	42.21: 
	42.22: 
	42.23: 
	42.24: 
	42.25: 
	42.26: 
	42.27: 
	42.28: 
	42.29: 
	42.30: 
	42.31: 
	42.32: 
	42.33: 
	42.34: 
	42.35: 
	42.36: 
	42.37: 
	42.38: 
	42.39: 
	42.40: 
	42.41: 
	42.42: 
	42.43: 
	42.44: 
	42.45: 
	42.46: 
	42.47: 
	42.48: 
	42.49: 
	42.50: 
	42.51: 
	42.52: 
	42.53: 
	42.54: 
	42.55: 
	42.56: 
	42.57: 
	42.58: 
	42.59: 
	42.60: 
	42.61: 
	42.62: 
	42.63: 
	42.64: 
	42.65: 
	42.66: 
	42.67: 
	42.68: 
	42.69: 
	42.70: 
	42.71: 
	42.72: 
	42.73: 
	42.74: 
	42.75: 
	42.76: 
	42.77: 
	42.78: 
	42.79: 
	42.80: 
	42.81: 
	42.82: 
	42.83: 
	42.84: 
	42.85: 
	42.86: 
	42.87: 
	42.88: 
	42.89: 
	42.90: 
	42.91: 
	42.92: 
	42.93: 
	42.94: 
	42.95: 
	42.96: 
	42.97: 
	42.98: 
	42.99: 
	42.100: 
	42.101: 
	42.102: 
	42.103: 
	42.104: 
	42.105: 
	42.106: 
	42.107: 
	42.108: 
	42.109: 
	42.110: 
	42.111: 
	42.112: 
	42.113: 
	42.114: 
	42.115: 
	42.116: 
	42.117: 
	42.118: 
	42.119: 
	42.120: 
	42.121: 
	42.122: 
	42.123: 
	42.124: 
	42.125: 
	42.126: 
	42.127: 
	42.128: 
	42.129: 
	42.130: 
	42.131: 
	42.132: 
	42.133: 
	42.134: 
	42.135: 
	42.136: 
	42.137: 
	42.138: 
	42.139: 
	42.140: 
	42.141: 
	42.142: 
	42.143: 
	42.144: 
	42.145: 
	42.146: 
	42.147: 
	42.148: 
	42.149: 
	42.150: 
	42.151: 
	42.152: 
	42.153: 
	42.154: 
	42.155: 
	42.156: 
	42.157: 
	42.158: 
	42.159: 
	42.160: 
	42.161: 
	42.162: 
	42.163: 
	42.164: 
	42.165: 
	42.166: 
	42.167: 
	42.168: 
	42.169: 
	42.170: 
	42.171: 
	42.172: 
	42.173: 
	42.174: 
	42.175: 
	42.176: 
	42.177: 
	42.178: 
	42.179: 
	42.180: 
	42.181: 
	42.182: 
	42.183: 
	42.184: 
	42.185: 
	42.186: 
	42.187: 
	42.188: 
	42.189: 
	42.190: 
	42.191: 
	42.192: 
	42.193: 
	42.194: 
	42.195: 
	42.196: 
	42.197: 
	42.198: 
	anm42: 
	42.EndLeft: 
	42.StepLeft: 
	42.PauseLeft: 
	42.PlayLeft: 
	42.PlayPauseLeft: 
	42.PauseRight: 
	42.PlayRight: 
	42.PlayPauseRight: 
	42.StepRight: 
	42.EndRight: 
	42.Minus: 
	42.Reset: 
	42.Plus: 
	pbs@ARFix@678: 
	43.0: 
	43.1: 
	43.2: 
	43.3: 
	43.4: 
	43.5: 
	43.6: 
	43.7: 
	43.8: 
	43.9: 
	43.10: 
	43.11: 
	43.12: 
	43.13: 
	43.14: 
	43.15: 
	43.16: 
	43.17: 
	43.18: 
	43.19: 
	43.20: 
	43.21: 
	43.22: 
	43.23: 
	43.24: 
	43.25: 
	43.26: 
	43.27: 
	43.28: 
	43.29: 
	43.30: 
	43.31: 
	43.32: 
	43.33: 
	43.34: 
	43.35: 
	43.36: 
	43.37: 
	43.38: 
	43.39: 
	43.40: 
	43.41: 
	43.42: 
	43.43: 
	43.44: 
	43.45: 
	43.46: 
	43.47: 
	43.48: 
	43.49: 
	43.50: 
	43.51: 
	43.52: 
	43.53: 
	43.54: 
	43.55: 
	43.56: 
	43.57: 
	43.58: 
	43.59: 
	43.60: 
	43.61: 
	43.62: 
	43.63: 
	43.64: 
	43.65: 
	43.66: 
	43.67: 
	43.68: 
	43.69: 
	43.70: 
	43.71: 
	43.72: 
	43.73: 
	43.74: 
	43.75: 
	43.76: 
	43.77: 
	43.78: 
	43.79: 
	43.80: 
	43.81: 
	43.82: 
	43.83: 
	43.84: 
	43.85: 
	43.86: 
	43.87: 
	43.88: 
	43.89: 
	43.90: 
	43.91: 
	43.92: 
	43.93: 
	43.94: 
	43.95: 
	43.96: 
	43.97: 
	43.98: 
	43.99: 
	43.100: 
	43.101: 
	43.102: 
	43.103: 
	43.104: 
	43.105: 
	43.106: 
	43.107: 
	43.108: 
	43.109: 
	43.110: 
	43.111: 
	43.112: 
	43.113: 
	43.114: 
	43.115: 
	43.116: 
	43.117: 
	43.118: 
	43.119: 
	43.120: 
	43.121: 
	43.122: 
	43.123: 
	43.124: 
	43.125: 
	43.126: 
	43.127: 
	43.128: 
	43.129: 
	43.130: 
	43.131: 
	43.132: 
	43.133: 
	43.134: 
	43.135: 
	43.136: 
	43.137: 
	43.138: 
	43.139: 
	43.140: 
	43.141: 
	43.142: 
	43.143: 
	43.144: 
	43.145: 
	43.146: 
	43.147: 
	43.148: 
	43.149: 
	43.150: 
	43.151: 
	43.152: 
	43.153: 
	43.154: 
	43.155: 
	43.156: 
	43.157: 
	43.158: 
	43.159: 
	43.160: 
	43.161: 
	43.162: 
	43.163: 
	43.164: 
	43.165: 
	43.166: 
	43.167: 
	43.168: 
	43.169: 
	43.170: 
	43.171: 
	43.172: 
	43.173: 
	43.174: 
	43.175: 
	43.176: 
	43.177: 
	43.178: 
	43.179: 
	43.180: 
	43.181: 
	43.182: 
	43.183: 
	43.184: 
	43.185: 
	43.186: 
	43.187: 
	43.188: 
	43.189: 
	43.190: 
	43.191: 
	43.192: 
	43.193: 
	43.194: 
	43.195: 
	43.196: 
	43.197: 
	43.198: 
	anm43: 
	43.EndLeft: 
	43.StepLeft: 
	43.PauseLeft: 
	43.PlayLeft: 
	43.PlayPauseLeft: 
	43.PauseRight: 
	43.PlayRight: 
	43.PlayPauseRight: 
	43.StepRight: 
	43.EndRight: 
	43.Minus: 
	43.Reset: 
	43.Plus: 
	pbs@ARFix@679: 
	pbs@ARFix@680: 
	pbs@ARFix@681: 
	pbs@ARFix@682: 
	pbs@ARFix@683: 
	pbs@ARFix@684: 
	pbs@ARFix@685: 
	pbs@ARFix@686: 
	pbs@ARFix@687: 
	pbs@ARFix@688: 
	pbs@ARFix@689: 
	pbs@ARFix@690: 
	44.0: 
	44.1: 
	44.2: 
	44.3: 
	44.4: 
	44.5: 
	44.6: 
	44.7: 
	44.8: 
	44.9: 
	44.10: 
	44.11: 
	44.12: 
	44.13: 
	44.14: 
	44.15: 
	44.16: 
	44.17: 
	44.18: 
	44.19: 
	44.20: 
	44.21: 
	44.22: 
	44.23: 
	44.24: 
	44.25: 
	44.26: 
	44.27: 
	44.28: 
	44.29: 
	44.30: 
	44.31: 
	44.32: 
	44.33: 
	44.34: 
	44.35: 
	44.36: 
	44.37: 
	44.38: 
	44.39: 
	44.40: 
	44.41: 
	44.42: 
	44.43: 
	44.44: 
	44.45: 
	44.46: 
	44.47: 
	44.48: 
	44.49: 
	44.50: 
	44.51: 
	44.52: 
	44.53: 
	44.54: 
	44.55: 
	44.56: 
	44.57: 
	44.58: 
	44.59: 
	44.60: 
	44.61: 
	44.62: 
	44.63: 
	44.64: 
	44.65: 
	44.66: 
	44.67: 
	44.68: 
	44.69: 
	44.70: 
	44.71: 
	44.72: 
	44.73: 
	44.74: 
	44.75: 
	44.76: 
	44.77: 
	44.78: 
	44.79: 
	anm44: 
	44.EndLeft: 
	44.StepLeft: 
	44.PauseLeft: 
	44.PlayLeft: 
	44.PlayPauseLeft: 
	44.PauseRight: 
	44.PlayRight: 
	44.PlayPauseRight: 
	44.StepRight: 
	44.EndRight: 
	44.Minus: 
	44.Reset: 
	44.Plus: 
	45.0: 
	45.1: 
	45.2: 
	45.3: 
	45.4: 
	45.5: 
	45.6: 
	45.7: 
	45.8: 
	45.9: 
	45.10: 
	45.11: 
	45.12: 
	45.13: 
	45.14: 
	45.15: 
	45.16: 
	45.17: 
	45.18: 
	45.19: 
	45.20: 
	45.21: 
	45.22: 
	45.23: 
	45.24: 
	45.25: 
	45.26: 
	45.27: 
	45.28: 
	45.29: 
	45.30: 
	45.31: 
	45.32: 
	45.33: 
	45.34: 
	45.35: 
	45.36: 
	45.37: 
	45.38: 
	45.39: 
	45.40: 
	45.41: 
	45.42: 
	45.43: 
	45.44: 
	45.45: 
	45.46: 
	45.47: 
	45.48: 
	45.49: 
	45.50: 
	45.51: 
	45.52: 
	45.53: 
	45.54: 
	45.55: 
	45.56: 
	45.57: 
	45.58: 
	45.59: 
	45.60: 
	45.61: 
	45.62: 
	45.63: 
	45.64: 
	45.65: 
	45.66: 
	45.67: 
	45.68: 
	45.69: 
	45.70: 
	45.71: 
	45.72: 
	45.73: 
	45.74: 
	45.75: 
	45.76: 
	45.77: 
	45.78: 
	45.79: 
	anm45: 
	45.EndLeft: 
	45.StepLeft: 
	45.PauseLeft: 
	45.PlayLeft: 
	45.PlayPauseLeft: 
	45.PauseRight: 
	45.PlayRight: 
	45.PlayPauseRight: 
	45.StepRight: 
	45.EndRight: 
	45.Minus: 
	45.Reset: 
	45.Plus: 
	pbs@ARFix@691: 
	pbs@ARFix@692: 
	pbs@ARFix@693: 
	pbs@ARFix@694: 
	pbs@ARFix@695: 
	pbs@ARFix@696: 
	46.0: 
	46.1: 
	46.2: 
	46.3: 
	46.4: 
	46.5: 
	46.6: 
	46.7: 
	46.8: 
	46.9: 
	46.10: 
	46.11: 
	46.12: 
	46.13: 
	46.14: 
	46.15: 
	46.16: 
	46.17: 
	46.18: 
	46.19: 
	46.20: 
	46.21: 
	46.22: 
	anm46: 
	46.EndLeft: 
	46.StepLeft: 
	46.PauseLeft: 
	46.PlayLeft: 
	46.PlayPauseLeft: 
	46.PauseRight: 
	46.PlayRight: 
	46.PlayPauseRight: 
	46.StepRight: 
	46.EndRight: 
	46.Minus: 
	46.Reset: 
	46.Plus: 
	pbs@ARFix@697: 
	pbs@ARFix@698: 
	pbs@ARFix@699: 
	pbs@ARFix@700: 
	pbs@ARFix@701: 
	pbs@ARFix@702: 
	pbs@ARFix@703: 
	pbs@ARFix@704: 
	pbs@ARFix@705: 
	pbs@ARFix@706: 
	pbs@ARFix@707: 


