
Chapter 5
Continuous-Time Market Model

The continuous-time market model allows for the incorporation of portfolio
re-allocation algorithms in a stochastic dynamic programming setting. This
chapter starts with a review of the concepts of assets, self-financing portfolios,
risk-neutral probability measures, and arbitrage in continuous time. We also
state and solve the equation satisfied by geometric Brownian motion, which
will be used for the modeling of continuous asset price processes.

5.1 Asset Price Modeling . 203
5.2 Arbitrage and Risk-Neutral Measures 205
5.3 Self-Financing Portfolio Strategies 207
5.4 Two-Asset Portfolio Model . 210
5.5 Geometric Brownian Motion . 216
Exercises . 220

5.1 Asset Price Modeling

The prices at time t ⩾ 0 of d+ 1 assets numbered no 0, 1, . . . , d is denoted
by the random vector

St =
(
S
(0)
t ,S(1)

t , . . . ,S(d)
t

)
which forms a stochastic process (St)t∈R+ . As in discrete time, the asset no
0 is a riskless asset (of savings account type) yielding an interest rate r, i.e.
we have

S
(0)
t = S

(0)
0 ert, t ⩾ 0.

Definition 5.1. Discounting. Let

Xt :=
(
S̃
(0)
t , S̃(1)

t , . . . , S̃(d)
t), t ∈ R,

" 203

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

denote the vector of discounted asset prices, defined as:

S̃
(k)
t = e−rtS

(k)
t , t ⩾ 0, k = 0, 1, . . . , d.

We can also write
Xt := e−rtSt, t ⩾ 0.

The concept of discounting is illustrated in the following figures.

My portfolio St grew by b = 5% this year.

Q: Did I achieve a positive return?

A:

(a) Scenario A.

My portfolio St grew by b = 5% this year.

The risk-free or inflation rate is r = 10%.

Q: Did I achieve a positive return?

A:

(b) Scenario B.

(a) Without inflation adjustment. (b) With inflation adjustment.

Fig. 5.1: Why apply discounting?

Definition 5.2. A portfolio strategy is a stochastic process (ξt)t∈R+ ⊂ Rd+1,
where ξ(k)t denotes the (possibly fractional) quantity of asset no k held at time
t ⩾ 0.

The value at time t ⩾ 0 of the portfolio strategy (ξt)t∈R+ ⊂ Rd+1 is defined
by

Vt := ξt • St =
d∑

k=0
ξ
(k)
t S

(k)
t , t ⩾ 0.

The discounted value of the portfolio is defined by

Ṽt := e−rtVt

= e−rtξt • St

204 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Stochastic Finance

= e−rt
d∑

k=0
ξ
(k)
t S

(k)
t

=
d∑

k=0
ξ
(k)
t S̃

(k)
t

= ξt • Xt, t ⩾ 0.

The effect of discounting from time t to time 0 is to divide prices by ert,
making all prices comparable at time 0.

5.2 Arbitrage and Risk-Neutral Measures

In continuous-time, the definition of arbitrage follows the lines of its analogs
in the one-step and discrete-time models. In what follows we will only consider
admissible portfolio strategies whose total value Vt remains nonnegative for
all times t ∈ [0,T].

Definition 5.3. A portfolio strategy
(
ξ
(k)
t

)
t∈[0,T],k=0,1,...,d with value

Vt = ξt • St =
d∑

k=0
ξ
(k)
t S

(k)
t , t ∈ [0,T],

constitutes an arbitrage opportunity if all three following conditions are sat-
isfied:

i) V0 ⩽ 0 at time t = 0, [Start from a zero-cost portfolio, or with a debt.]
ii) VT ⩾ 0 at time t = T , [Finish with a nonnegative amount.]

iii) P(VT > 0) > 0 at time t = T . [Profit is made with nonzero probability.]

Roughly speaking, (ii) means that the investor wants no loss, (iii) means
that he wishes to sometimes make a strictly positive gain, and (i) means
that he starts with zero capital or even with a debt.

Next, we turn to the definition of risk-neutral probability measures (or
martingale measures) in continuous time, which states that under a risk-
neutral probability measure P∗, the return of the risky asset over the time
interval [u, t] equals the return of the riskless asset given by

S
(0)
t = e(t−u)rS(0)

u , 0 ⩽ u ⩽ t.

Recall that the filtration (Ft)t∈R+ is generated by Brownian motion (Bt)t∈R+ ,
i.e.

Ft = σ(Bu : 0 ⩽ u ⩽ t), t ⩾ 0.

Definition 5.4. A probability measure P∗ on Ω is called a risk-neutral mea-
sure if it satisfies

" 205

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

E∗[S(k)
t

∣∣Fu] = e(t−u)rS(k)
u , 0 ⩽ u ⩽ t, k = 1, 2, . . . , d. (5.1)

where E∗ denotes the expectation under P∗.
As in the discrete-time case, P♯ would be called a risk premium measure if it
satisfied

E♯
[
S
(k)
t

∣∣Fu] > e(t−u)rSu, 0 ⩽ u ⩽ t, k = 1, 2, . . . , d,

meaning that by taking risks in buying S
(i)
t , one could make an expected

return higher than that of the riskless asset

S
(0)
t = e(t−u)rS(0)

u , 0 ⩽ u ⩽ t.

Similarly, a negative risk premium measure P♭ satisfies

E♭
[
S
(k)
t

∣∣Fu] < e(t−u)rS(k)
u , 0 ⩽ u ⩽ t, k = 1, 2, . . . , d.

From the relation

S
(0)
t = e(t−u)rS(0)

u , 0 ⩽ u ⩽ t,

we interpret (5.1) by saying that the expected return of the risky asset S(k)
t

under P∗ equals the return of the riskless asset S(0)
t , k = 1, 2, . . . , d. Recall

that the discounted (in $ at time 0) price S̃(k)
t of the risky asset no k is defined

by

S̃
(k)
t := e−rtS

(k)
t =

S
(k)
t

S
(0)
t /S(0)

0

, t ⩾ 0, k = 0, 1, . . . , d,

i.e. S(0)
t /S(0)

0 plays the role of a numéraire process in the sense of Chapter 16.

As in the discrete-time case, see Proposition 2.13, the martingale property
in continuous time, see Definition 4.2, can be used to characterize risk-neutral
probability measures, for the derivation of pricing partial differential equa-
tions (PDEs), and for the computation of conditional expectations.
Proposition 5.5. The probability measure P∗ is risk-neutral if and only if
the discounted risky asset price process (S̃

(k)
t)t∈R+ is a martingale under P∗,

k = 1, 2, . . . , d.
Proof. If P∗ is a risk-neutral probability measure, we have

E∗[S̃(k)
t

∣∣Fu] = E∗[e−rtS
(k)
t

∣∣Fu]
= e−rtE∗[S(k)

t

∣∣Fu]
= e−rt e(t−u)rS(k)

u

206 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Stochastic Finance

= e−ruS
(k)
u

= S̃
(k)
u , 0 ⩽ u ⩽ t,

hence
(
S̃
(k)
t

)
t∈R+

is a martingale under P∗, k = 1, 2, . . . , d. Conversely, if(
S̃
(k)
t

)
t∈R+

is a martingale under P∗, then

E∗[S(k)
t

∣∣Fu] = E∗[ertS̃(k)
t

∣∣Fu]
= ertE∗[S̃(k)

t

∣∣Fu]
= ertS̃(k)

u

= e(t−u)rS(k)
u , 0 ⩽ u ⩽ t, k = 1, 2, . . . , d,

hence the probability measure P∗ is risk-neutral according to Definition 5.4.
□

In what follows we will only consider probability measures P∗ that are equiv-
alent to P, in the sense that they share the same events of zero probability.

Definition 5.6. A probability measure P∗ on (Ω, F) is said to be equivalent
to another probability measure P when

P∗(A) = 0 if and only if P(A) = 0, for all A ∈ F . (5.2)

Next, we note that the first fundamental theorem of asset pricing also holds
in continuous time, and can be used to check for the existence of arbitrage
opportunities.

Theorem 5.7. A market is without arbitrage opportunity if and only if it
admits at least one equivalent risk-neutral probability measure P∗.

Proof. See Harrison and Pliska (1981) and Chapter VII-4a of Shiryaev (1999).
□

5.3 Self-Financing Portfolio Strategies

Let ξ(i)t denote the (possibly fractional) quantity invested at time t over the
time interval [t, t+ dt), in the asset S(k)

t , k = 0, 1, . . . , d, and let

ξt =
(
ξ
(k)
t

)
k=0,1,...,d, St =

(
S
(k)
t

)
k=0,1,...,d, t ⩾ 0,

denote the associated portfolio value and asset price processes. The portfolio
value Vt at time t ⩾ 0 is given by

" 207

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Vt = ξt • St =
d∑

k=0
ξ
(k)
t S

(k)
t , t ⩾ 0. (5.3)

Our description of portfolio strategies proceeds in four equivalent formula-
tions (5.4), (5.6) (5.8) and (5.9), which correspond to different interpretations
of the self-financing condition.

Self-financing portfolio update

The portfolio strategy (ξt)t∈R+ is self-financing if the portfolio value remains
constant after updating the portfolio from ξt to ξt+dt, i.e.

ξt • St+dt =
d∑

k=0
ξ
(k)
t S

(k)
t+dt =

d∑
k=0

ξ
(k)
t+dtS

(k)
t+dt = ξt+dt • St+dt, (5.4)

which is the continuous-time analog of the self-financing condition already
encountered in the discrete setting of Chapter 2, see Definition 2.4. A ma-
jor difference with the discrete-time case of Definition 2.4, however, is that
the continuous-time differentials dSt and dξt do not make pathwise sense
as continuous-time stochastic integrals are defined by L2 limits, cf. Proposi-
tion 4.21, or by convergence in probability.

St+dt St+dt St+2dtSt

t + 2dtt t + dt t + dt

ξt+dtξt ξt ξt+dt

ξt+dt • St+2dtξt • St ξt • St+dt ξt+dt • St+dt=Portfolio value
Asset value

Time scale
Portfolio allocation

Fig. 5.2: Illustration of the self-financing condition (5.4).

Equivalently, Condition (5.4) can be rewritten as

d∑
k=0

S
(k)
t+dt(ξ

(k)
t+dt − ξ

(k)
t) = 0, (5.5)

or, letting
dξ

(k)
t := ξ

(k)
t+dt − ξ

(k)
t , k = 0, 1, . . . , d,

denote the respective variations in portfolio allocations, as

d∑
k=0

S
(k)
t+dtdξ

(k)
t = 0. (5.6)

208 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Stochastic Finance

Condition (5.5) can be rewritten as

d∑
k=0

S
(k)
t

(
ξ
(k)
t+dt − ξ

(k)
t

)
+

d∑
k=0

(
S
(k)
t+dt − S

(k)
t

)(
ξ
(k)
t+dt − ξ

(k)
t

)
= 0, (5.7)

which shows that (5.4) and (5.6) are equivalent to

d∑
k=0

S
(k)
t dξ

(k)
t +

d∑
k=0

dS
(k)
t

• dξ
(k)
t = 0 (5.8)

in differential notation, which may also be rewritten as

St • dξt + dSt • dξt = 0.

Self-financing portfolio differential

In practice, the self-financing portfolio property will be characterized by the
following proposition, which states that the value of a self-financing portfolio
can be written as the sum of its trading Profits and Losses (P/L).

Proposition 5.8. A portfolio strategy
(
ξ
(k)
t

)
t∈[0,T],k=0,1,...,d with value

Vt = ξt • St =
d∑

k=0
ξ
(k)
t S

(k)
t , t ⩾ 0,

is self-financing according to (5.4) if and only if the relation

dVt =
d∑

k=0
ξ
(k)
t dS

(k)
t︸ ︷︷ ︸

P/L for asset no k

(5.9)

holds.

Proof. By Itô’s calculus, using (4.27) we have

dVt =
d∑

k=0
ξ
(k)
t dS

(k)
t +

d∑
k=0

S
(k)
t dξ

(k)
t +

d∑
k=0

dS
(k)
t

• dξ
(k)
t ,

which shows that (5.8) is equivalent to (5.9). □

Market Completeness

We refer to Definition 1.9 for the definition of contingent claim.

" 209

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Definition 5.9. A contingent claim with payoff C is said to be attainable
if there exists a (self-financing) portfolio strategy

(
ξ
(k)
t

)
t∈[0,T],k=0,1,...,d such

that at the maturity time T the equality

VT = ξT • ST =
d∑

k=0
ξ
(k)
T S

(k)
T = C

holds (almost surely) between random variables.

When a claim with payoff C is attainable, its price at time t will be given by
the value Vt of a self-financing portfolio hedging C.

Definition 5.10. A market model is said to be complete if every contingent
claim is attainable.

The next result is the continuous-time statement of the second fundamental
theorem of asset pricing.

Theorem 5.11. A market model without arbitrage opportunities is complete
if and only if it admits only one equivalent risk-neutral probability measure
P∗.

Proof. See Harrison and Pliska (1981) and Chapter VII-4a of Shiryaev (1999).
□

5.4 Two-Asset Portfolio Model

In the Black and Scholes (1973) model, one can show the existence of a unique
risk-neutral probability measure, hence the model is without arbitrage and
complete. From now on we work with d = 1, i.e. with a market based on a
riskless asset with price (At)t∈R+ and a risky asset with price (St)t∈R+ .

Self-financing portfolio strategies

Let ξt and ηt denote the (possibly fractional) quantities respectively invested
at time t over the time interval [t, t+ dt), into the risky asset St and riskless
asset At, and let

ξt = (ηt, ξt), St = (At,St), t ⩾ 0,

denote the associated portfolio value and asset price processes. The portfolio
value Vt at time t is given by

Vt = ξt • St = ηtAt + ξtSt, t ⩾ 0.

210 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Stochastic Finance

Our description of portfolio strategies proceeds in four equivalent formula-
tions presented below in Equations (5.10), (5.11), (5.14) and (5.15), which
correspond to different interpretations of the self-financing condition.

Self-financing portfolio update

The portfolio strategy (ηt, ξt)t∈R+ is self-financing if the portfolio value re-
mains constant after updating the portfolio from (ηt, ξt) to (ηt+dt, ξt+dt),
i.e.

ξt • St+dt = ηtAt+dt + ξtSt+dt = ηt+dtAt+dt + ξt+dtSt+dt = ξt+dt • St+dt.
(5.10)

St+dt St+dt St+2dtSt

t + 2dtt t + dt t + dt

ξt+dtξt ξt ξt+dt

ξt+dt • St+2dtξt • St ξt • St+dt ξt+dt • St+dt=Portfolio value
Asset value

Time scale
Portfolio allocation

Fig. 5.3: Illustration of the self-financing condition (5.10).

Equivalently, Condition (5.10) can be rewritten as

At+dtdηt + St+dtdξt = 0, (5.11)

where
dηt := ηt+dt − ηt and dξt := ξt+dt − ξt

denote the respective changes in portfolio allocations, hence we have

At+dt(ηt − ηt+dt) = St+dt(ξt+dt − ξt). (5.12)

In other words, when one sells a (possibly fractional) quantity ηt − ηt+dt > 0
of the riskless asset valued At+dt at the end of the time interval [t, t+ dt] for
the total amount At+dt(ηt − ηt+dt), one should entirely spend this income to
buy the corresponding quantity ξt+dt − ξt > 0 of the risky asset for the same
amount St+dt(ξt+dt − ξt) > 0.

Similarly, if one sells a quantity −dξt > 0 of the risky asset St+dt between
the time intervals [t, t+ dt] and [t+ dt, t+ 2dt] for a total amount −St+dtdξt,
one should entirely use this income to buy a quantity dηt > 0 of the riskless
asset for an amount At+dtdηt > 0, i.e.

At+dtdηt = −St+dtdξt.

Condition (5.12) can also be rewritten as

" 211

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

St(ξt+dt − ξt) +At(ηt+dt − ηt) + (St+dt − St)(ξt+dt − ξt) (5.13)
+ (At+dt −At) • (ηt+dt − ηt) = 0,

which shows that (5.10) and (5.11) are equivalent to

Stdξt +Atdηt + dSt • dξt + dAt • dηt = 0 (5.14)

in differential notation, with

dAt • dηt ≃ (At+dt −At) • (ηt+dt − ηt) = rAt(dt • dηt) = 0

in the sense of Itô’s calculus, by the Itô multiplication Table 4.1. This yields
the following proposition, which is also consequence of Proposition 5.8.

Proposition 5.12. A portfolio allocation (ξt, ηt)t∈R+ with value

Vt = ηtAt + ξtSt, t ⩾ 0,

is self-financing according to (5.10) if and only if the relation

dVt = ηtdAt︸ ︷︷ ︸
Risk−free P/L

+ ξtdSt︸ ︷︷ ︸
Risky P/L

(5.15)

holds.

Proof. By the Itô formula (4.27), we have

dVt = [ηtdAt + ξtdSt] + [Stdξt +Atdηt + dSt • dξt + dAt • dηt],

which shows that (5.15) is equivalent to (5.14). Equivalently, we can also
check the equality

dVt = Vt+dt − Vt

= ηt+dtAt+dt + ξt+dtSt+dt − (ηtAt + ξtSt)

= ηt(At+dt −At) + ξt(St+dt − St) + St(ξt+dt − ξt) +At(ηt+dt − ηt)

+(St+dt − St)(ξt+dt − ξt) + (At+dt −At)(ηt+dt − ηt).

□

Let
Ṽt := e−rtVt and S̃t := e−rtSt, t ⩾ 0,

respectively denote the discounted portfolio value and discounted risky asset
price at time t ⩾ 0.

212 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Stochastic Finance

Geometric Brownian motion

Recall that the riskless asset price process (At)t∈R+ admits the following
equivalent constructions:

At+dt −At
At

= rdt, dAt
At

= rdt, dAt
dt

= rAt, t ⩾ 0,

with the solution
At = A0 ert, t ⩾ 0, (5.16)

where r > 0 is the risk-free interest rate.∗ The risky asset price process
(St)t∈R+ will be modeled using a geometric Brownian motion defined from
the equation

St+dt − St
St

=
dSt
St

= µdt+ σdBt, t ⩾ 0, (5.17)

see Section 5.5, which can be solved numerically, according to the following
code, see also Sections 22.1-22.2.

1 nsim <- 10; N=2000; t <- 0:N; dt <- 1.0/N; mu=0.75; sigma=0.2; S <- matrix(0, nsim, N+1)
dB <- matrix(rnorm(nsim*N,mean=0,sd=sqrt(dt)), nsim, N+1)

3 for (i in 1:nsim){S[i,1]=1.0;
for (j in 1:N+1){S[i,j]=S[i,j-1]+mu*S[i,j-1]*dt+sigma*S[i,j-1]*dB[i,j]}}

5 plot(t*dt, rep(0, N+1), xlab = "Time", ylab = "Geometric Brownian motion", lwd=2, ylim =
c(min(S),max(S)), type = "l", col = 0,las=1, cex.axis=1.5,cex.lab=1.5, xaxs='i', yaxs='i')

for (i in 1:nsim){lines(t*dt, S[i,], lwd=2, type = "l", col = i)}
7 lines(t*dt, exp(mu*t*dt),xlab = "",type = "l", col = 1, lwd=5)

Note that by Proposition 5.15 below, we also have

St = S0 exp
(
σBt +

(
µ− 1

2σ
2
)
t

)
, t ⩾ 0,

which can be simulated by the following code.

1 N=2000; t <- 0:N; dt <- 1.0/N; mu=1.5;sigma=0.3; nsim <- 20; par(oma=c(0,1,0,0))
dB <- matrix(rnorm(nsim*N,mean=0,sd=sqrt(dt)), nsim, N)

3 S <- cbind(rep(0, nsim), t(apply(dB, 1, cumsum)))
for (i in 1:nsim){S[i,] <- exp(mu*t*dt+sigma*S[i,]-sigma*sigma*t*dt/2)}

5 plot(t*dt, rep(0, N+1), xlab = "Time", ylab = "Geometric Brownian motion", lwd=2, ylim =
c(0.8,6), type = "l", col = 0,las=1, cex.axis=1.5, cex.lab=1.5, xaxs='i', yaxs='i')

for (i in 1:nsim){lines(t*dt, S[i,], lwd=2, type = "l", col = i)}
7 lines(t*dt, exp(mu*t*dt),xlab = "",type = "l", col = 1, lwd=5)

Figure 5.4 presents a collection of of geometric Brownian motion sample
paths.
∗ “Anyone who believes exponential growth can go on forever in a finite world is either
a madman or an economist”, K. E. Boulding (1973), page 248.

" 213

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Kenneth_E._Boulding
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

Time

G
eo

m
et

ric
 B

ro
w

ni
an

 m
ot

io
n

Fig. 5.4: Ten sample paths of geometric Brownian motion (St)t∈R+ .

Lemma 5.13. Discounting lemma. Consider an asset price process (St)t∈R+

be as in (5.17), i.e.

dSt = µStdt+ σStdBt, t ⩾ 0.

Then, the discounted asset price process
(
S̃t
)
t∈R+

= (e−rtSt)t∈R+ satisfies
the equation

dS̃t = (µ− r)S̃tdt+ σS̃tdBt.

Proof. By (4.27) and the Itô multiplication Table 4.1, we have

dS̃t = d(e−rtSt)

= Std(e−rt) + e−rtdSt + (d e−rt) • dSt

= −r e−rtStdt+ e−rtdSt + (−r e−rtdt) • dSt

= −r e−rtStdt+ µ e−rtStdt+ σ e−rtStdBt

= (µ− r)S̃tdt+ σS̃tdBt.

□

In Lemma 5.14, which is the continuous-time analog of Lemma 3.2, we show
that when a portfolio is self-financing, its discounted value is a gain process
given by the sum over time of discounted trading profits and losses (number
of risky assets ξt times discounted price variation dS̃t).

Note that in Equation (5.18) below, no profit or loss arises from trading
the discounted riskless asset Ãt := e−rtAt = A0, because its price remains
constant over time.

Lemma 5.14. Let (ηt, ξt)t∈R+ be a portfolio strategy with value

Vt = ηtAt + ξtSt, t ⩾ 0.

The following statements are equivalent:

214 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Stochastic Finance

(i) the portfolio strategy (ηt, ξt)t∈R+ is self-financing,

(ii) the discounted portfolio value Ṽt = e−rtVt can be written as the stochas-
tic integral sum

Ṽt = Ṽ0 +
w t

0
ξudS̃u,︸ ︷︷ ︸

Discounted P/L

t ⩾ 0, (5.18)

of discounted profits and losses.

Proof. Assuming that (i) holds, the self-financing condition and (5.16)-(5.17)
show that

dVt = ηtdAt + ξtdSt

= rηtAtdt+ µξtStdt+ σξtStdBt

= rVtdt+ (µ− r)ξtStdt+ σξtStdBt, t ⩾ 0,

where we used Vt = ηtAt + ξtSt, hence

e−rtdVt = r e−rtVtdt+ (µ− r) e−rtξtStdt+ σ e−rtξtStdBt, t ⩾ 0,

and

dṼt = d
(

e−rtVt
)

= −r e−rtVtdt+ e−rtdVt

= (µ− r)ξt e−rtStdt+ σξt e−rtStdBt

= (µ− r)ξtS̃tdt+ σξtS̃tdBt

= ξtdS̃t, t ⩾ 0,

i.e. (5.18) holds by integrating on both sides as

Ṽt − Ṽ0 =
w t

0
dṼu =

w t
0
ξudS̃u, t ⩾ 0.

(ii) Conversely, if (5.18) is satisfied we have

dVt = d(ertṼt)
= r ertṼtdt+ ertdṼt
= r ertṼtdt+ ertξtdS̃t
= rVtdt+ ertξtdS̃t
= rVtdt+ ertξtS̃t((µ− r)dt+ σdBt)

= rVtdt+ ξtSt((µ− r)dt+ σdBt)

= rηtAtdt+ µξtStdt+ σξtStdBt

" 215

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= ηtdAt + ξtdSt,

hence the portfolio is self-financing according to Definition 5.8. □

As a consequence of Relation (5.18), the problem of hedging a claim payoff
C with maturity T also reduces to that of finding the process (ξt)t∈[0,T]
appearing in the decomposition of the discounted claim payoff C̃ = e−rTC
as a stochastic integral:

C̃ = ṼT = Ṽ0 +
w T

0
ξtdS̃t,

see Section 7.5 on hedging by the martingale method.
Example. Power options in the Bachelier model.

In the Bachelier (1900) model with interest rate r = 0, the underlying asset
price can be modeled by Brownian motion (Bt)t∈R+ , and may therefore
become negative.∗ The claim payoff C = (BT)

2 of a power option with at
maturity T > 0 admits the stochastic integral decomposition

(BT)
2 = T + 2

w T
0
BtdBt

which shows that the claim can be hedged using ξt = 2Bt units of the
underlying asset at time t ∈ [0,T], see Exercise 6.1.
Similarly, in the case of power claim payoff C = (BT)

3 we have

(BT)
3 = 3

w T
0

(
T − t+ (Bt)

2)dBt,
cf. Exercise 4.12.

Note that according to (5.18), the (non-discounted) self-financing portfolio
value Vt can be written as

Vt = ertV0 + (µ− r)
w t

0
e(t−u)rξuSudu+ σ

w t
0

e(t−u)rξuSudBu, t ⩾ 0.
(5.19)

5.5 Geometric Brownian Motion

In this section we solve the stochastic differential equation

dSt = µStdt+ σStdBt

which is used to model the St the risky asset price at time t, where µ ∈ R

and σ > 0. This equation is rewritten in integral form as
∗ Negative oil prices have been observed in May 2020 when the prices of oil futures
contracts fell below zero.

216 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Stochastic Finance

St = S0 + µ
w t

0
Ssds+ σ

w t
0
SsdBs, t ⩾ 0. (5.20)

1 N=1000; t <- 0:N; dt <- 1.0/N; sigma=0.2; mu=0.5
dB <- rnorm(N,mean=0,sd=sqrt(dt));

3 plot(t*dt, exp(mu*t*dt), xlab = "time", ylab = "Geometric Brownian motion", type = "l", ylim
= c(0.75, 2), col = 1,lwd=3)

lines(t*dt, exp(sigma*c(0,cumsum(dB))+mu*t*dt-sigma*sigma*t*dt/2),xlab = "time",type =
"l",ylim = c(0, 4), col = 4)

Figure 5.5 presents an illustration of the geometric Brownian process using
the expression provided in Proposition 5.15.

Fig. 5.5: Geometric Brownian motion started at S0 = 1, with µ = r = 1 and σ2 = 0.5.∗

Proposition 5.15. The solution of the stochastic differential equation

dSt = µStdt+ σStdBt (5.21)

is given by

St = S0 exp
(
σBt +

(
µ− 1

2σ
2
)
t

)
, t ⩾ 0. (5.22)

Proof. a) Using log-returns. We apply Itô’s formula to the Itô process
(St)t∈R+ with vt = µSt and ut = σSt, by taking

f(St) = logSt, with f(x) := log x.

Using (4.29), this yields the log-return dynamics

d logSt = f ′(St)dSt +
1
2f

′′(St)dSt • dSt

∗ The animation works in Acrobat Reader on the entire pdf file.

" 217

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

= µStf
′(St)dt+ σStf

′(St)dBt +
σ2

2 S2
t f

′′(St)dt

= µdt+ σdBt − σ2

2 dt,

hence

logSt − logS0 =
w t

0
d logSs

=

(
µ− σ2

2

)w t
0
ds+ σ

w t
0
dBs

=

(
µ− σ2

2

)
t+ σBt,

and
St = S0 exp

((
µ− σ2

2

)
t+ σBt

)
, t ⩾ 0.

b) Let us provide an alternative proof by searching for a solution of the form

St = f(t,Bt)

where f(t,x) is a function to be determined. By Itô’s formula (4.25) we have

dSt = df(t,Bt) =
∂f

∂t
(t,Bt)dt+

∂f

∂x
(t,Bt)dBt +

1
2
∂2f

∂x2 (t,Bt)dt.

Comparing this expression to (5.21) and identifying the terms in dBt we get
∂f

∂x
(t,Bt) = σSt,

∂f

∂t
(t,Bt) +

1
2
∂2f

∂x2 (t,Bt) = µSt.

Using the relation St = f(t,Bt), these two equations rewrite as
∂f

∂x
(t,Bt) = σf(t,Bt),

∂f

∂t
(t,Bt) +

1
2
∂2f

∂x2 (t,Bt) = µf(t,Bt).

Since Bt is a Gaussian random variable taking all possible values in R, the
equations should hold for all x ∈ R, as follows:

218 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Stochastic Finance



∂f

∂x
(t,x) = σf(t,x),

∂f

∂t
(t,x) + 1

2
∂2f

∂x2 (t,x) = µf(t,x).

(5.23a)

(5.23b)

To find the solution f(t,x) = f(t, 0) eσx of (5.23a) we let g(t,x) = log f(t,x)
and rewrite (5.23a) as

∂g

∂x
(t,x) = ∂

∂x
log f(t,x) = 1

f(t,x)
∂f

∂x
(t,x) = σ,

i.e.
∂g

∂x
(t,x) = σ,

which is solved as
g(t,x) = g(t, 0) + σx,

hence
f(t,x) = eg(t,0) eσx = f(t, 0) eσx.

Plugging back this expression into the second equation (5.23b) yields

eσx ∂f
∂t

(t, 0) + 1
2σ

2 eσxf(t, 0) = µf(t, 0) eσx,

i.e.
∂f

∂t
(t, 0) =

(
µ− σ2

2

)
f(t, 0),

or
∂g

∂t
(t, 0) = µ− σ2

2 .

This yields

g(t, 0) = g(0, 0) +
(
µ− σ2

2

)
t,

hence

f(t,x) = eg(t,x) = eg(t,0)+σx

= eg(0,0)+σx+(µ−σ2/2)t

= f(0, 0) eσx+(µ−σ2/2)t, t ⩾ 0.

We conclude that

St = f(t,Bt) = f(0, 0) eσBt+(µ−σ2/2)t,

and since f(0, 0) = f(0,B0) = S0, the solution to (5.21) is given by

" 219

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

St = S0 eσBt+(µ−σ2/2)t, t ⩾ 0.

□

Conversely, taking St = f(t,Bt) with f(t,x) = S0 eµt+σx−σ2t/2, we may
apply Itô’s formula to check that

dSt = df(t,Bt) (5.24)

=
∂f

∂t
(t,Bt)dt+

∂f

∂x
(t,Bt)dBt +

1
2
∂2f

∂x2 (t,Bt)dt

=

(
µ− σ2

2

)
S0 eµt+σBt−σ2t/2dt+ σS0 eµt+σBt−σ2t/2dBt

+
1
2σ

2S0 eµt+σBt−σ2t/2dt

= µS0 eµt+σBt−σ2t/2dt+ σS0 eµt+σBt−σ2t/2dBt

= µStdt+ σStdBt.

Exercises

Exercise 5.1 Show that at any time T > 0, the random variable ST :=
S0 eσBT +(µ−σ2/2)T has the lognormal distribution with probability density
function

x 7−→ f(x) =
1

xσ
√

2πT
e−(−(µ−σ2/2)T+log(x/S0))2/(2σ2T), x > 0,

with log-variance σ2 and log-mean (µ− σ2/2)T + logS0, see Figures 3.10
and 5.6.

1 N=1000; t <- 0:N; dt <- 1.0/N; nsim <- 100
2 sigma=0.2;r=0.5;a=(1+r*dt)*(1-sigma*sqrt(dt))-1;b=(1+r*dt)*(1+sigma*sqrt(dt))-1

X <- matrix(a+(b-a)*rbinom(nsim * N, 1, 0.5), nsim, N) # using Bernoulli samples
4 X<-cbind(rep(0,nsim),t(apply((1+X),1,cumprod))); X[,1]=1;H<-hist(X[,N],plot=FALSE);

dev.new(width=16,height=7);
layout(matrix(c(1,2), nrow =1, byrow = TRUE)); par(mar=c(2,2,2,0), oma = c(2, 2, 2, 2))

6 plot(t*dt,X[1,],xlab="time",ylab="",type="l",ylim=c(0.8,3), col = 0,xaxs='i',las=1,
cex.axis=1.6)

for (i in 1:nsim){lines(t*dt, X[i,], xlab = "time", type = "l", col = i)}
8 lines((1+r*dt)^t, type="l", lty=1, col="black",lwd=3,xlab="",ylab="", main="")

for (i in 1:nsim){points(0.999, X[i,N], pch=1, lwd = 5, col = i)}; x <- seq(0.01,3, length=100);
10 px <- exp(-(-(r-sigma^2/2)+log(x))^2/2/sigma^2)/x/sigma/sqrt(2*pi); par(mar = c(2,2,2,2))

plot(NULL , xlab="", ylab="", xlim = c(0, max(px,H$density)),ylim=c(0.8,3),axes=F, las=1)
12 rect(0, H$breaks[1:(length(H$breaks) - 1)], col=rainbow(20,start=0.08,end=0.6), H$density,

H$breaks[2:length(H$breaks)])
lines(px,x, type="l", lty=1, col="black",lwd=3,xlab="",ylab="", main="")

220 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Stochastic Finance

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

time

Fig. 5.6: Statistics of geometric Brownian paths vs. lognormal distribution.

Exercise 5.2

a) Consider the stochastic differential equation

dSt = rStdt+ σStdBt, t ⩾ 0, (5.25)

where r,σ ∈ R are constants and (Bt)t∈R+ is a standard Brownian mo-
tion. Compute d logSt using the Itô formula.

b) Solve the ordinary differential equation df(t) = cf(t)dt for f(t), and the
stochastic differential equation (5.25) for St.

c) Using the Gaussian moment generating function (MGF) formula (A.41),
compute the n-th order moment E[Snt] for all n > 0.

d) Compute the lognormal mean and variance

E[St] = S0 ert and Var[St] = S2
0 e2rt(eσ2t − 1

)
, t ⩾ 0.

e) Recover the lognormal mean and variance of Question (d) by deriving
differential equations for the functions u(t) := E[St] and v(t) := E

[
S2
t

]
,

t ⩾ 0, using stochastic calculus.

Exercise 5.3 Assume that (Bt)t∈R+ and (Wt)t∈R+ are standard Brownian
motions, correlated according to the Itô rule dWt • dBt = ρdt for ρ ∈ [−1, 1],
and consider the solution (Yt)t∈R+ of the stochastic differential equation
dYt = µYtdt + ηYtdWt, t ⩾ 0, where µ, η ∈ R are constants. Compute
df(St,Yt), for f a C2 function on R2 using the bivariate Itô formula (4.26).

Exercise 5.4 Consider the asset price process (St)t∈R+ given by the stochastic
differential equation

dSt = rStdt+ σStdBt.

" 221

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Find the stochastic integral decomposition of the random variable ST , i.e.,
find the constant C(S0, r,T) and the process (ζt,T)t∈[0,T] such that

ST = C(S0, r,T) +
w T

0
ζt,T dBt. (5.26)

Hint: Use the fact that the discounted price process (Xt)t∈[0,T] := (e−rtSt)t∈[0,T]
satisfies the relation dXt = σXtdBt.

Exercise 5.5 Consider (Bt)t∈R+ a standard Brownian motion generating the
filtration (Ft)t∈R+ and the process (St)t∈R+ defined by

St = S0 exp
(w t

0
σsdBs +

w t
0
usds

)
, t ⩾ 0,

where (σt)t∈R+ and (ut)t∈R+ are (Ft)t∈[0,T]-adapted processes.
a) Compute dSt using Itô calculus.
b) Show that St satisfies a stochastic differential equation to be determined.

Exercise 5.6 Consider (Bt)t∈R+ a standard Brownian motion generating the
filtration (Ft)t∈R+ , and let σ > 0.
a) Compute the mean and variance of the random variable St defined as

St := 1 + σ
w t

0
eσBs−σ2s/2dBs, t ⩾ 0. (5.27)

b) Express d log(St) using (5.27) and the Itô formula.
c) Show that St = eσBt−σ2t/2 for t ⩾ 0.

Exercise 5.7 We consider a leveraged fund with factor β : 1 on an index
(St)t∈R+ modeled as the geometric Brownian motion

dSt = rStdt+ σStdBt, t ⩾ 0,

under the risk-neutral probability measure P∗. Examples of leveraged funds
include ProShares Ultra S&P500 and ProShares UltraShort S&P500.
a) Find the portfolio allocation (ξt, ηt) of the leveraged fund value

Ft = ξtSt + ηtAt, t ⩾ 0,

where At := A0 ert represents the risk-free money market account price.
Hint: Leveraging with a factor β : 1 means that the risky component
ξtStof the portfolio should represent β times the invested amount Ft at
any time t ⩾ 0.

222 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://www.proshares.com/funds/sso.html
https://www.proshares.com/funds/sds.html
https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Stochastic Finance

b) Find the stochastic differential equation satisfied by (Ft)t∈R+ under the
self-financing condition dFt = ξtdSt + ηtdAt.

c) Find the relation between the fund value Ft and the index St by solving
the stochastic differential equation obtained for Ft in Question (b). For
simplicity we take F0 := Sβ0 .

Exercise 5.8 Consider two assets whose prices S(1)
t , S(2)

t at time t ∈ [0,T]
follow the geometric Brownian dynamics

dS
(1)
t = µS

(1)
t dt+ σ1S

(1)
t dW

(1)
t and dS

(2)
t = µS

(2)
t dt+ σ2S

(2)
t dW

(2)
t ,

t ∈ [0,T], where
(
W

(1)
t

)
t∈[0,T],

(
W

(2)
t

)
t∈[0,T] are two Brownian motions with

correlation ρ ∈ [−1, 1], i.e. we have E
[
W

(1)
t W

(2)
t

]
= ρt.

a) Compute E
[
S
(i)
t

]
, t ∈ [0,T], i = 1, 2.

b) Compute Var
[
S
(i)
t

]
, t ∈ [0,T], i = 1, 2.

c) Compute Var
[
S
(2)
t − S

(1)
t

]
, t ∈ [0,T].

Exercise 5.9 Solve the stochastic differential equation

dXt = h(t)Xtdt+ σXtdBt,

where σ > 0 and h(t) is a deterministic, integrable function of t ⩾ 0.

Hint: Look for a solution of the form Xt = f(t) eσBt−σ2t/2, where f(t) is a
function to be determined, t ⩾ 0.

Exercise 5.10 Let (Bt)t∈R+ denote a standard Brownian motion generating
the filtration (Ft)t∈R+ .

a) Letting Xt := σBt + νt, σ > 0, ν ∈ R, compute St := eXt by the Itô
formula

f(Xt) = f(X0)+
w t

0
us
∂f

∂x
(Xs)dBs+

w t
0
vs
∂f

∂x
(Xs)ds+

1
2
w t

0
u2
s
∂2f

∂x2 (Xs)ds,
(5.28)

applied to f(x) = ex, by writing Xt as Xt = X0 +
w t

0
usdBs +

w t
0
vsds.

b) Let r > 0. For which value of ν does (St)t∈R+ satisfy the stochastic
differential equation

dSt = rStdt+ σStdBt ?

c) Given σ > 0, let Xt := (BT −Bt)σ, and compute Var[Xt], 0 ⩽ t ⩽ T .

" 223

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

d) Let the process (St)t∈R+ be defined by St = S0 eσBt+νt, t ⩾ 0. Using the
result of Exercise A.2, show that the conditional probability that ST > K
given St = x can be computed as

P(ST > K | St = x) = Φ
(

log(x/K) + (T − t)ν

σ
√
T − t

)
, 0 ⩽ t < T ,

where Φ(x) denotes the standard Gaussian Cumulative Distribution Func-
tion.
Hint: Use the time splitting decomposition

ST = St
ST
St

= St e(BT −Bt)σ+(T−t)ν , 0 ⩽ t ⩽ T .

Problem 5.11 Stop-loss/start-gain strategy (Lipton (2001) § 8.3.3, Exer-
cise 4.21 continued). Let (Bt)t∈R+ be a standard Brownian motion started
at B0 ∈ R.

a) We consider a simplified foreign exchange model in which the AUD is a
risky asset and the AUD/SGD exchange rate at time t is modeled by Bt,
i.e. AU$1 equals SG$Bt at time t. A foreign exchange (FX) European
call option gives to its holder the right (but not the obligation) to receive
AU$1 in exchange for K = SG$1 at maturity T . Give the option payoff
at maturity, quoted in SGD.

In what follows, for simplicity we assume no time value of money (r = 0),
i.e. the (riskless) SGD account is priced At = A0 = 1, 0 ⩽ t ⩽ T .

b) Consider the following hedging strategy for the European call option of
Question (a):

i) If B0 > 1, charge the premium B0 − 1 at time 0, and borrow SG$1
to purchase AU$1.

ii) If B0 < 1, issue the option for free.
iii) From time 0 to time T , purchase∗ AU$1 every time Bt crosses K = 1

from below, and sell† AU$1 each time Bt crosses K = 1 from above.

Show that this strategy effectively hedges the foreign exchange European
call option at maturity T .

Hint: Note that it suffices to consider four scenarios based on B0 < 1 vs.
B0 < 1 and BT > 1 vs. BT < 1.

c) Determine the quantities ηt of SGD cash and ξt of (risky) AUDs to be
held in the portfolio and express the portfolio value

Vt = ηt + ξtBt

∗ We need to borrow SG$1 if this is the first AUD purchase.
† We use the SG$1 product of the sale to refund the loan.

224 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Stochastic Finance

at all times t ∈ [0,T].
d) Compute the integral summation

w t
0
ηsdAs +

w t
0
ξsdBs

of portfolio profits and losses at any time t ∈ [0,T].

Hint: Apply the Itô-Tanaka formula (4.48), see Question (e) in Exer-
cise 4.21.

e) Is the portfolio strategy (ηt, ξt)t∈[0,T] self-financing? How to interpret the
answer in practice?

Problem 5.12 Liquidity pools are smart contracts found on decentralized ex-
changes (DEX) such as Uniswap, in which liquidity providers (LPs) may earn
passive income by depositing two digital assets. Liquidity pools enable the
automatic trading of digital assets using Automated Market Makers (AMMs),
such as the Constant Product Automated Market Maker (CPAMM) intro-
duced by Vitalik Buterin in a legendary 2016 Reddit post.

In the Geometric Mean Market Maker (G3M) model used in Uniswap v2,∗
Sushiswap or Balancer, the quantities Xt > 0, Yt > 0 of the assets X, Y
present in the pool are linked at all times t ⩾ 0 by the relation

C = Xα
t Y

1−α
t , t ⩾ 0, (5.29)

where C > 0 and α ∈ (0, 1) are constants. External traders are accessing the
liquidity pool to perform the exchange of a quantity ∆Yt := Yt − Yt− ∈ R of
the asset Y into a quantity ∆Xt := Xt −Xt− ∈ R of the asset X, where Xt−

∗ See the 2020 .

" 225

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

Uniswap v2 Core

Hayden Adams
hayden@uniswap.org

Noah Zinsmeister
noah@uniswap.org

Dan Robinson
dan@paradigm.xyz

March 2020

Abstract

This technical whitepaper explains some of the design decisions behind the Uniswap
v2 core contracts. It covers the contracts’ new features—including arbitrary pairs
between ERC20s, a hardened price oracle that allows other contracts to estimate the
time-weighted average price over a given interval, “flash swaps” that allow traders to
receive assets and use them elsewhere before paying for them later in the transaction,
and a protocol fee that can be turned on in the future. It also re-architects the contracts
to reduce their attack surface. This whitepaper describes the mechanics of Uniswap v2’s
“core” contracts including the pair contract that stores liquidity providers’ funds—and
the factory contract used to instantiate pair contracts.

1 Introduction

Uniswap v1 is an on-chain system of smart contracts on the Ethereum blockchain, imple-
menting an automated liquidity protocol based on a “constant product formula” [1]. Each
Uniswap v1 pair stores pooled reserves of two assets, and provides liquidity for those two
assets, maintaining the invariant that the product of the reserves cannot decrease. Traders
pay a 30-basis-point fee on trades, which goes to liquidity providers. The contracts are
non-upgradeable.

Uniswap v2 is a new implementation based on the same formula, with several new highly-
desirable features. Most significantly, it enables the creation of arbitrary ERC20/ERC20
pairs, rather than supporting only pairs between ERC20 and ETH. It also provides a hard-
ened price oracle that accumulates the relative price of the two assets at the beginning of
each block. This allows other contracts on Ethereum to estimate the time-weighted average
price for the two assets over arbitrary intervals. Finally, it enables “flash swaps” where users
can receive assets freely and use them elsewhere on the chain, only paying for (or returning)
those assets at the end of the transaction.

While the contract is not generally upgradeable, there is a private key that has the
ability to update a variable on the factory contract to turn on an on-chain 5-basis-point fee
on trades. This fee will initially be turned off, but could be turned on in the future, after
which liquidity providers would earn 25 basis points on every trade, rather than 30 basis
points.

As discussed in section 3, Uniswap v2 also fixes some minor issues with Uniswap v1, as
well as rearchitecting the implementation, reducing Uniswap’s attack surface and making
the system more easily upgradeable by minimizing the logic in the “core” contract that
holds liquidity providers’ funds.

1

mailto:hayden@uniswap.org

mailto:noah@uniswap.org

mailto:dan@paradigm.xyz

This paper describes the mechanics of that core contract, as well as the factory contract
used to instantiate those contracts. Actually using Uniswap v2 will require calling the
pair contract through a “router” contract that computes the trade or deposit amount and
transfers funds to the pair contract.

2 New features

2.1 ERC-20 pairs

Uniswap v1 used ETH as a bridge currency. Every pair included ETH as one of its
assets. This makes routing simpler—every trade between ABC and XYZ goes through the
ETH/ABC pair and the ETH/XYZ pair—and reduces fragmentation of liquidity.

However, this rule imposes significant costs on liquidity providers. All liquidity providers
have exposure to ETH, and suffer impermanent loss based on changes in the prices of other
assets relative to ETH. When two assets ABC and XYZ are correlated—for example, if
they are both USD stablecoins—liquidity providers on a Uniswap pair ABC/XYZ would
generally be subject to less impermanent loss than the ABC/ETH or XYZ/ETH pairs.

Using ETH as a mandatory bridge currency also imposes costs on traders. Traders have
to pay twice as much in fees as they would on a direct ABC/XYZ pair, and they suffer
slippage twice.

Uniswap v2 allows liquidity providers to create pair contracts for any two ERC-20s.
A proliferation of pairs between arbitrary ERC-20s could make it somewhat more difficult

to find the best path to trade a particular pair, but routing can be handled at a higher layer
(either off-chain or through an on-chain router or aggregator).

2.2 Price oracle

The marginal price offered by Uniswap (not including fees) at time t can be computed
by dividing the reserves of asset a by the reserves of asset b.

pt =
rat
rbt

(1)

Since arbitrageurs will trade with Uniswap if this price is incorrect (by a sufficient amount
to make up for the fee), the price offered by Uniswap tends to track the relative market price
of the assets, as shown by Angeris et al [2]. This means it can be used as an approximate
price oracle.

However, Uniswap v1 is not safe to use as an on-chain price oracle, because it is very
easy to manipulate. Suppose some other contract uses the current ETH-DAI price to settle
a derivative. An attacker who wishes to manipulate the measured price can buy ETH from
the ETH-DAI pair, trigger settlement on the derivative contract (causing it to settle based
on the inflated price), and then sell ETH back to the pair to trade it back to the true price.1

This might even be done as an atomic transaction, or by a miner who controls the ordering
of transactions within a block.

Uniswap v2 improves this oracle functionality by measuring and recording the price
before the first trade of each block (or equivalently, after the last trade of the previous

1For a real-world example of how using Uniswap v1 as an oracle can make a contract vulnerable to such
an attack, see [3].

2

block). This price is more difficult to manipulate than prices during a block. If the attacker
submits a transaction that attempts to manipulate the price at the end of a block, some
other arbitrageur may be able to submit another transaction to trade back immediately
afterward in the same block. A miner (or an attacker who uses enough gas to fill an entire
block) could manipulate the price at the end of a block, but unless they mine the next block
as well, they may not have a particular advantage in arbitraging the trade back.

Specifically, Uniswap v2 accumulates this price, by keeping track of the cumulative sum
of prices at the beginning of each block in which someone interacts with the contract. Each
price is weighted by the amount of time that has passed since the last block in which it was
updated, according to the block timestamp.2 This means that the accumulator value at any
given time (after being updated) should be the sum of the spot price at each second in the
history of the contract.

at =

t∑
i=1

pi (2)

To estimate the time-weighted average price from time t1 to t2, an external caller can
checkpoint the accumulator’s value at t1 and then again at t2, subtract the first value from
the second, and divide by the number of seconds elapsed. (Note that the contract itself does
not store historical values for this accumulator—the caller has to call the contract at the
beginning of the period to read and store this value.)

pt1,t2 =

∑t2
i=t1

pi

t2 − t1
=

∑t2
i=1 pi −

∑t1
i=1 pi

t2 − t1
=
at2 − at1
t2 − t1

(3)

Users of the oracle can choose when to start and end this period. Choosing a longer
period makes it more expensive for an attacker to manipulate the TWAP, although it results
in a less up-to-date price.

One complication: should we measure the price of asset A in terms of asset B, or the
price of asset B in terms of asset A? While the spot price of A in terms of B is always the
reciprocal of the spot price of B in terms of A, the mean price of asset A in terms of asset B
over a particular period of time is not equal to the reciprocal of the mean price of asset B in
terms of asset A.3 For example, if the USD/ETH price is 100 in block 1 and 300 in block 2,
the average USD/ETH price will be 200 USD/ETH, but the average ETH/USD price will
be 1/150 ETH/USD. Since the contract cannot know which of the two assets users would
want to use as the unit of account, Uniswap v2 tracks both prices.

Another complication is that it is possible for someone to send assets to the pair con-
tract—and thus change its balances and marginal price—without interacting with it, and
thus without triggering an oracle update. If the contract simply checked its own balances
and updated the oracle based on the current price, an attacker could manipulate the oracle
by sending an asset to the contract immediately before calling it for the first time in a
block. If the last trade was in a block whose timestamp was X seconds ago, the contract
would incorrectly multiply the new price by X before accumulating it, even though nobody

2Since miners have some freedom to set the block timestamp, users of the oracle should be aware that
these values may not correspond precisely to real-world times.

3The arithmetic mean price of asset A in terms of asset B over a given period is equal to the reciprocal
of the harmonic mean price of asset B in terms of asset A over that period. If the contract measured the
geometric mean price, then the prices would be the reciprocals of each other. However, the geometric mean
TWAP is less commonly used, and is difficult to compute on Ethereum.

3

has had an opportunity to trade at that price. To prevent this, the core contract caches
its reserves after each interaction, and updates the oracle using the price derived from the
cached reserves rather than the current reserves. In addition to protecting the oracle from
manipulation, this change enables the contract re-architecture described below in section
3.2.

2.2.1 Precision

Because Solidity does not have first-class support for non-integer numeric data types,
the Uniswap v2 uses a simple binary fixed point format to encode and manipulate prices.
Specifically, prices at a given moment are stored as UQ112.112 numbers, meaning that 112
fractional bits of precision are specified on either side of the decimal point, with no sign.
These numbers have a range of [0, 2112 − 1]4 and a precision of 1

2112 .
The UQ112.112 format was chosen for a pragmatic reason — because these numbers can

be stored in a uint224, this leaves 32 bits of a 256 bit storage slot free. It also happens that
the reserves, each stored in a uint112, also leave 32 bits free in a (packed) 256 bit storage slot.
These free spaces are used for the accumulation process described above. Specifically, the
reserves are stored alongside the timestamp of the most recent block with at least one trade,
modded with 232 so that it fits into 32 bits. Additionally, although the price at any given
moment (stored as a UQ112.112 number) is guaranteed to fit in 224 bits, the accumulation
of this price over an interval is not. The extra 32 bits on the end of the storage slots for the
accumulated price of A/B and B/A are used to store overflow bits resulting from repeated
summations of prices. This design means that the price oracle only adds an additional three
SSTORE operations (a current cost of about 15,000 gas) to the first trade in each block.

The primary downside is that 32 bits isn’t quite enough to store timestamp values that
will reasonably never overflow. In fact, the date when the Unix timestamp overflows a uint32
is 02/07/2106. To ensure that this system continues to function properly after this date,
and every multiple of 232 − 1 seconds thereafter, oracles are simply required to check prices
at least once per interval (approximately 136 years). This is because the core method of
accumulation (and modding of timestamp), is actually overflow-safe, meaning that trades
across overflow intervals can be appropriately accounted for given that oracles are using the
proper (simple) overflow arithmetic to compute deltas.

2.3 Flash Swaps

In Uniswap v1, a user purchasing ABC with XYZ needs to send the XYZ to the contract
before they could receive the ABC. This is inconvenient if that user needs the ABC they
are buying in order to obtain the XYZ they are paying with. For example, the user might
be using that ABC to purchase XYZ in some other contract in order to arbitrage a price
difference from Uniswap, or they could be unwinding a position on Maker or Compound by
selling the collateral to repay Uniswap.

Uniswap v2 adds a new feature that allows a user to receive and use an asset before paying
for it, as long as they make the payment within the same atomic transaction. The swap

function makes a call to an optional user-specified callback contract in between transferring
out the tokens requested by the user and enforcing the invariant. Once the callback is
complete, the contract checks the new balances and confirms that the invariant is satisfied

4The theoretical upper bound of 2112 − (1
2112

) does not apply in this setting, as UQ112.112 numbers in

Uniswap are always generated from the ratio of two uint112s. The largest such ratio is 2112−1
1

= 2112 − 1.

4

(after adjusting for fees on the amounts paid in). If the contract does not have sufficient
funds, it reverts the entire transaction.

A user can also repay the Uniswap pool using the same token, rather than completing
the swap. This is effectively the same as letting anyone flash-borrow any of assets stored in
a Uniswap pool (for the same 0.30% fee as Uniswap charges for trading).5

2.4 Protocol fee

Uniswap v2 includes a 0.05% protocol fee that can be turned on and off. If turned on,
this fee would be sent to a feeTo address specified in the factory contract.

Initially, feeTo is not set, and no fee is collected. A pre-specified address—feeToSetter—can
call the setFeeTo function on the Uniswap v2 factory contract, setting feeTo to a different
value. feeToSetter can also call the setFeeToSetter to change the feeToSetter address
itself.

If the feeTo address is set, the protocol will begin charging a 5-basis-point fee, which is
taken as a 1

6 cut of the 30-basis-point fees earned by liquidity providers. That is, traders will
continue to pay a 0.30% fee on all trades; 83.3% of that fee (0.25% of the amount traded)
will go to liquidity providers, and 16.6% of that fee (0.05% of the amount traded) will go to
the feeTo address.

Collecting this 0.05% fee at the time of the trade would impose an additional gas cost on
every trade. To avoid this, accumulated fees are collected only when liquidity is deposited
or withdrawn. The contract computes the accumulated fees, and mints new liquidity tokens
to the fee beneficiary, immediately before any tokens are minted or burned.

The total collected fees can be computed by measuring the growth in
√
k (that is,

√
x · y)

since the last time fees were collected.6 This formula gives you the accumulated fees between
t1 and t2 as a percentage of the liquidity in the pool at t2:

f1,2 = 1−
√
k1√
k2

(4)

If the fee was activated before t1, the feeTo address should capture 1
6 of fees that were

accumulated between t1 and t2. Therefore, we want to mint new liquidity tokens to the
feeTo address that represent φ · f1,2 of the pool, where φ is 1

6 .
That is, we want to choose sm to satisfy the following relationship, where s1 is the total

quantity of outstanding shares at time t1:

sm
sm + s1

= φ · f1,2 (5)

After some manipulation, including substituting 1−
√
k1√
k2

for f1,2 and solving for sm, we

can rewrite this as:

sm =

√
k2 −

√
k1

(1
φ − 1) ·

√
k2 +

√
k1
· s1 (6)

Setting φ to 1
6 gives us the following formula:

5Because Uniswap charges fees on input amounts, the fee relative to the withdrawn amount is actually
slightly higher: 1

1−0.003
− 1 = 3

997
≈ 0.3009203%.

6We can use this invariant, which does not account for liquidity tokens that were minted or burned,
because we know that fees are collected every time liquidity is deposited or withdrawn.

5

sm =

√
k2 −

√
k1

5 ·
√
k2 +

√
k1
· s1 (7)

Suppose the initial depositor puts 100 DAI and 1 ETH into a pair, receiving 10 shares.
Some time later (without any other depositor having participated in that pair), they attempt
to withdraw it, at a time when the pair has 96 DAI and 1.5 ETH. Plugging those values
into the above formula gives us the following:

sm =

√
1.5 · 96−

√
1 · 100

5 ·
√

1.5 · 96 +
√

1 · 100
· 10 ≈ 0.0286 (8)

2.5 Meta transactions for pool shares

Pool shares minted by Uniswap v2 pairs natively support meta transactions. This means
users can authorize a transfer of their pool shares with a signature7, rather than an on-chain
transaction from their address. Anyone can submit this signature on the user’s behalf by
calling the permit function, paying gas fees and possibly performing other actions in the
same transaction.

3 Other changes

3.1 Solidity

Uniswap v1 is implemented in Vyper, a Python-like smart contract language. Uniswap v2
is implemented in the more widely-used Solidity, since it requires some capabilities that were
not yet available in Vyper (such as the ability to interpret the return values of non-standard
ERC-20 tokens, as well as access to new opcodes such as chainid via inline assembly) at
the time it was being developed.

3.2 Contract re-architecture

One design priority for Uniswap v2 is to minimize the surface area and complexity of
the core pair contract—the contract that stores liquidity providers’ assets. Any bugs in this
contract could be disastrous, since millions of dollars of liquidity might be stolen or frozen.

When evaluating the security of this core contract, the most important question is
whether it protects liquidity providers from having their assets stolen or locked. Any feature
that is meant to support or protect traders—other than the basic functionality of allowing
one asset in the pool to be swapped for another—can be handled in a “router” contract.

In fact, even part of the swap functionality can be pulled out into the router contract.
As mentioned above, Uniswap v2 stores the last recorded balance of each asset (in order to
prevent a particular manipulative exploit of the oracle mechanism). The new architecture
takes advantage of this to further simplify the Uniswap v1 contract.

In Uniswap v2, the seller sends the asset to the core contract before calling the swap
function. Then, the contract measures how much of the asset it has received, by comparing
the last recorded balance to its current balance. This means the core contract is agnostic

7The signed message conforms to the EIP-712 standard, the same one used by meta transactions for
tokens like CHAI and DAI.

6

to the way in which the trader transfers the asset. Instead of transferFrom, it could be a
meta transaction, or any other future mechanism for authorizing the transfer of ERC-20s.

3.2.1 Adjustment for fee

Uniswap v1’s trading fee is applied by reducing the amount paid into the contract by
0.3% before enforcing the constant-product invariant. The contract implicitly enforces the
following formula:

(x1 − 0.003 · xin)) · y1 >= x0 · y0 (9)

With flash swaps, Uniswap v2 introduces the possibility that xin and yin might both
be non-zero (when a user wants to pay the pair back using the same asset, rather than
swapping). To handle such cases while properly applying fees, the contract is written to
enforce the following invariant:8

(x1 − 0.003 · xin) · (y1 − 0.003 · yin) >= x0 · y0 (10)

To simplify this calculation on-chain, we can multiply each side of the inequality by
1,000,000:

(1000 · x1 − 3 · xin) · (1000 · y1 − 3 · yin) >= 1000000 · x0 · y0 (11)

3.2.2 sync() and skim()

To protect against bespoke token implementations that can update the pair contract’s
balance, and to more gracefully handle tokens whose total supply can be greater than 2112,
Uniswap v2 has two bail-out functions: sync()and skim().

sync() functions as a recovery mechanism in the case that a token asynchronously
deflates the balance of a pair. In this case, trades will receive sub-optimal rates, and if no
liquidity provider is willing to rectify the situation, the pair is stuck. sync() exists to set
the reserves of the contract to the current balances, providing a somewhat graceful recovery
from this situation.

skim() functions as a recovery mechanism in case enough tokens are sent to an pair to
overflow the two uint112 storage slots for reserves, which could otherwise cause trades to
fail. skim() allows a user to withdraw the difference between the current balance of the
pair and 2112 − 1 to the caller, if that difference is greater than 0.

3.3 Handling non-standard and unusual tokens

The ERC-20 standard requires that transfer() and transferFrom() return a boolean in-
dicating the success or failure of the call [4]. The implementations of one or both of these
functions on some tokens—including popular ones like Tether (USDT) and Binance Coin
(BNB)—instead have no return value. Uniswap v1 interprets the missing return value of
these improperly defined functions as false—that is, as an indication that the transfer was
not successful—and reverts the transaction, causing the attempted transfer to fail.

8Note that using the new architecture, xin is not provided by the user; instead, it is calculated by
measuring the contract’s balance after the callback, x1, and subtracting (x0 - xout) from it. This logic does
not distinguish between assets sent into the contract before it is called and assets sent into the contract
during the callback. yin is computed in the same way, based on y0, y1, and yout.

7

Uniswap v2 handles non-standard implementations differently. Specifically, if a transfer()
call9 has no return value, Uniswap v2 interprets it as a success rather than as a failure. This
change should not affect any ERC-20 tokens that conform to the standard (because in those
tokens, transfer() always has a return value).

Uniswap v1 also makes the assumption that calls to transfer() and transferFrom() cannot
trigger a reentrant call to the Uniswap pair contract. This assumption is violated by certain
ERC-20 tokens, including ones that support ERC-777’s “hooks” [5]. To fully support such
tokens, Uniswap v2 includes a “lock” that directly prevents reentrancy to all public state-
changing functions. This also protects against reentrancy from the user-specified callback
in a flash swap, as described in section 2.3.

3.4 Initialization of liquidity token supply

When a new liquidity provider deposits tokens into an existing Uniswap pair, the number
of liquidity tokens minted is computed based on the existing quantity of tokens:

sminted =
xdeposited
xstarting

· sstarting (12)

But what if they are the first depositor? In that case, xstarting is 0, so this formula will
not work.

Uniswap v1 sets the initial share supply to be equal to the amount of ETH deposited (in
wei). This was a somewhat reasonable value, because if the initial liquidity was deposited
at the correct price, then 1 liquidity pool share (which, like ETH, is an 18-decimal token)
would be worth approximately 2 ETH.

However, this meant that the value of a liquidity pool share was dependent on the ratio
at which liquidity was initially deposited, which was fairly arbitrary, especially since there
was no guarantee that that ratio reflected the true price. Additionally, Uniswap v2 supports
arbitrary pairs, so many pairs will not include ETH at all.

Instead, Uniswap v2 initially mints shares equal to the geometric mean of the amounts
deposited:

sminted =
√
xdeposited · ydeposited (13)

This formula ensures that the value of a liquidity pool share at any time is essentially
independent of the ratio at which liquidity was initially deposited. For example, suppose
that the price of 1 ABC is currently 100 XYZ. If the initial deposit had been 2 ABC and
200 XYZ (a ratio of 1:100), the depositor would have received

√
2 · 200 = 20 shares. Those

shares should now still be worth 2 ABC and 200 XYZ, plus accumulated fees.
If the initial deposit had been 2 ABC and 800 XYZ (a ratio of 1:400), the depositor

would have received
√

2 · 800 = 40 pool shares.10

The above formula ensures that a liquidity pool share will never be worth less than
the geometric mean of the reserves in that pool. However, it is possible for the value of

9As described above in section 3.2, Uniswap v2 core does not use transferFrom().
10This also reduces the likelihood of rounding errors, since the number of bits in the quantity of shares

will be approximately the mean of the number of bits in the quantity of asset X in the reserves, and the
number of bits in the quantity of asset Y in the reserves:

log2

√
x · y =

log2 x + log2 y

2
(14)

8

a liquidity pool share to grow over time, either by accumulating trading fees or through
“donations” to the liquidity pool. In theory, this could result in a situation where the value
of the minimum quantity of liquidity pool shares (1e-18 pool shares) is worth so much that
it becomes infeasible for small liquidity providers to provide any liquidity.

To mitigate this, Uniswap v2 burns the first 1e-15 (0.000000000000001) pool shares that
are minted (1000 times the minimum quantity of pool shares), sending them to the zero
address instead of to the minter. This should be a negligible cost for almost any token
pair.11 But it dramatically increases the cost of the above attack. In order to raise the
value of a liquidity pool share to $100, the attacker would need to donate $100,000 to the
pool, which would be permanently locked up as liquidity.

3.5 Wrapping ETH

The interface for transacting with Ethereum’s native asset, ETH, is different from the
standard interface for interacting with ERC-20 tokens. As a result, many other protocols on
Ethereum do not support ETH, instead using a canonical ”wrapped ETH” token, WETH
[6].

Uniswap v1 is an exception. Since every Uniswap v1 pair included ETH as one asset, it
made sense to handle ETH directly, which was slightly more gas-efficient.

Since Uniswap v2 supports arbitrary ERC-20 pairs, it now no longer makes sense to
support unwrapped ETH. Adding such support would double the size of the core codebase,
and risks fragmentation of liquidity between ETH and WETH pairs12. Native ETH needs
to be wrapped into WETH before it can be traded on Uniswap v2.

3.6 Deterministic pair addresses

As in Uniswap v1, all Uniswap v2 pair contracts are instantiated by a single factory
contract. In Uniswap v1, these pair contracts were created using the CREATE opcode,
which meant that the address of such a contract depended on the order in which that pair
was created. Uniswap v2 uses Ethereum’s new CREATE2 opcode [8] to generate a pair
contract with a deterministic address. This means that it is possible to calculate a pair’s
address (if it exists) off-chain, without having to look at the chain state.

3.7 Maximum token balance

In order to efficiently implement the oracle mechanism, Uniswap v2 only support reserve
balances of up to 2112 − 1. This number is high enough to support 18-decimal-place tokens
with a totalSupply over 1 quadrillion.

If either reserve balance does go above 2112 − 1, any call to the swap function will begin
to fail (due to a check in the _update() function). To recover from this situation, any user
can call the skim() function to remove excess assets from the liquidity pool.

11In theory, there are some cases where this burn could be non-negligible, such as pairs between high-value
zero-decimal tokens. However, these pairs are a poor fit for Uniswap anyway, since rounding errors would
make trading infeasible.

12As of this writing, one of the highest-liquidity pairs on Uniswap v1 is the pair between ETH and WETH
[7].

9

References

[1] Hayden Adams. 2018. url: https://hackmd.io/@477aQ9OrQTCbVR3fq1Qzxg/HJ9jLsfTz?
type=view.

[2] Guillermo Angeris et al. An analysis of Uniswap markets. 2019. arXiv: 1911.03380
[q-fin.TR].

[3] samczsun. Taking undercollateralized loans for fun and for profit. Sept. 2019. url:
https://samczsun.com/taking- undercollateralized- loans- for- fun- and-

for-profit/.

[4] Fabian Vogelsteller and Vitalik Buterin. Nov. 2015. url: https://eips.ethereum.
org/EIPS/eip-20.

[5] Jordi Baylina Jacques Dafflon and Thomas Shababi. EIP 777: ERC777 Token Standard.
Nov. 2017. url: https://eips.ethereum.org/EIPS/eip-777.

[6] Radar. WTF is WETH? url: https://weth.io/.

[7] Uniswap.info. Wrapped Ether (WETH). url: https://uniswap.info/token/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2.

[8] Vitalik Buterin. EIP 1014: Skinny CREATE2. Apr. 2018. url: https://eips.ethereum.
org/EIPS/eip-1014.

4 Disclaimer

This paper is for general information purposes only. It does not constitute investment
advice or a recommendation or solicitation to buy or sell any investment and should not
be used in the evaluation of the merits of making any investment decision. It should not
be relied upon for accounting, legal or tax advice or investment recommendations. This
paper reflects current opinions of the authors and is not made on behalf of Paradigm or its
affiliates and does not necessarily reflect the opinions of Paradigm, its affiliates or individuals
associated with Paradigm. The opinions reflected herein are subject to change without being
updated.

10

https://hackmd.io/@477aQ9OrQTCbVR3fq1Qzxg/HJ9jLsfTz?type=view

https://hackmd.io/@477aQ9OrQTCbVR3fq1Qzxg/HJ9jLsfTz?type=view

https://arxiv.org/abs/1911.03380

https://arxiv.org/abs/1911.03380

https://samczsun.com/taking-undercollateralized-loans-for-fun-and-for-profit/

https://samczsun.com/taking-undercollateralized-loans-for-fun-and-for-profit/

https://eips.ethereum.org/EIPS/eip-20

https://eips.ethereum.org/EIPS/eip-20

https://eips.ethereum.org/EIPS/eip-777

https://weth.io/

https://uniswap.info/token/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2

https://eips.ethereum.org/EIPS/eip-1014

https://eips.ethereum.org/EIPS/eip-1014

		Introduction

		New features

		ERC-20 pairs

		Price oracle

		Precision

		Flash Swaps

		Protocol fee

		Meta transactions for pool shares

		Other changes

		Solidity

		Contract re-architecture

		Adjustment for fee

		sync() and skim()

		Handling non-standard and unusual tokens

		Initialization of liquidity token supply

		Wrapping ETH

		Deterministic pair addresses

		Maximum token balance

		Disclaimer

https://en.wikipedia.org/wiki/Smart_contract
https://en.wikipedia.org/wiki/Uniswap
https://en.wikipedia.org/wiki/Vitalik_Buterin
https://www.reddit.com/r/ethereum/comments/55m04x/lets_run_onchain_decentralized_exchanges_the_way/
https://en.wikipedia.org/wiki/Uniswap
https://www.sushi.com/
https://balancer.fi/
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

and Yt− are the left limits∗

Xt− := lim
s↗t

Xs and Yt− := lim
s↗t

Ys, t > 0.

The exchange rate St at time t ⩾ 0 is defined as the ratio of the number
of units of Y vs. number of units of X exchanged during an “infinitesimal”
transaction, i.e.

St := lim
∆Xt→0

∓∆Yt
±∆Xt

= − lim
∆Xt→0

∆Yt
∆Xt

,

where the limit is assumed to exist at all times t ⩾ 0. In addition, in what
follows we will regard Xt and Yt as continuous processes.

The following 10 questions are interdependent and should be treated in
sequence.

a) Express the exchange rate St in terms of Xt, Yt and γ := α/(1 −α) under
the G3M condition (5.29).

b) At time t = 0, the liquidity provider deposits Y0 units of Y in the pool,
together with X0 units of X. Write down the value LP0 of the liquidity
pool at time t = 0 in terms of C, α, γ and S0 only, quoted in units of Y .

c) Write down the liquidity pool value LPt at any time t ⩾ 0 in terms of C
α, γ and St only, quoted in units of Y .

d) We consider an investor who builds a long portfolio with Y0 > 0 units of
Y and X0 > 0 of X at time t = 0, and holds those assets at all times.
Write down the value Vt of this long portfolio at any time t ⩾ 0 in terms
of C, α, γ, S0 and St only, quoted in units of Y .

e) Show that the difference in value Vt − LPt between the long portfolio and
the liquidity pool can be written as

Vt − LPt = ϕ

(
St
S0

)
,

where ϕ(x) is a function to be determined explicitly, and parameterized
by C, S0, α and γ.

f) Show that the value Vt of the investor’s long portfolio always overperforms
the liquidity pool value LPt.

g) Find a lower bound for the expected loss E[Vt − LPt] of the liquidity
provider in terms of C, S0, E[St], α and γ.

Hint: Use Jensen’s inequality.
h) In this question only, we consider the CPAMM setting with α = 1/2

and we model the exchange rate (St)t=0,1 in a one-step model on the
probability space Ω = {ω−,ω+}, with

∗ ∆Xt and ∆Yt may be positive or negative, depending on the direction of the transac-
tion.

226 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Stochastic Finance

S1(ω
−) = a, and S1(ω

+) = b,

and ab = S2
0 , a < S0 < b. Show that the potential loss V1 − LP1 of

the liquidity provider at time t = 1 can be exactly hedged by holding a
quantity ξ of an option with payoff |S1 − S0|, and compute ξ in terms of
C, S0 and/or a, b.

Hints: Here the payoff is C = V1 − LP1 and the underlying asset value
at time t = 1 is |S1 − S0|. The portfolio allocation is (ξ, 0), as no riskless
asset is used here.

i) In this question only, we model the exchange rate (St)t∈R+ as the geo-
metric Brownian motion∗ solution of

dSt = µStdt+ σStdBt,

where µ ∈ R, σ > 0, and (Bt)t∈R+ is a standard Brownian motion.
Compute the expected loss E[Vt − LPt] incurred by the liquidity provider
in comparison to the investor’s long portfolio.

j) In this question, the liquidity provider is rewarded† by a proportional fee
payed on deposits at the rate κ, and stored outside of the liquidity pool.
This results into an ask rate from the pool

At := lim
∆Xt↗0

∓∆Yt
±∆Xt

= − lim
∆Xt↗0

∆Yt
∆Xt

when the trader wishes to exchange Y into X, and a bid rate from the
pool

Bt := lim
∆Xt↘0

∓∆Yt
±∆Xt

= − lim
∆Xt↘0

∆Yt
∆Xt

when the trader wishes to exchange X into Y , where the limits are as-
sumed to exist at all times t ⩾ 0.
Express the ask and bid exchange rates At, Bt in terms of Xt, Yt, κ and
γ under the G3M condition (5.29).

Hint: Treat the cases ∆Xt > 0 and ∆Yt > 0 separately.

∗ Question (i) requires knowledge from Chapters 5-6.
† Yield farming: a high-risk, volatile investment strategy where an investor stakes, or
lends, crypto assets on a decentralized (DeFi) platform to earn a higher return.

" 227

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://www.investopedia.com/what-is-yield-farming-7098519
https://twitter.com/stablekwon/status/1460042489096667138?lang=en
https://personal.ntu.edu.sg/nprivault/indext.html

N. Privault

Further reading

Briola et al. (2023) “Specifically, two main events are identified as the fuse
for the Terra collapse. First, private market actors short sold Bitcoin (BTC)
with the final aim of spreading panic into the market. Second, on 07 May
2022, the liquidity pool Curve-3pool suffered a "liquidity pool attack", which
caused the first UST de-pegging, below $0.99. It is worth noting that, on
01 April 2022, Kwon announced the launch of a new liquidity pool (4pool)
together with DeFi majors Frax Finance and Redacted Cartel.

228 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Do_Kwon
https://personal.ntu.edu.sg/nprivault/indext.html

	pbs@ARFix@227:
	pbs@ARFix@228:
	pbs@ARFix@229:
	pbs@ARFix@230:
	pbs@ARFix@231:
	pbs@ARFix@232:
	pbs@ARFix@233:
	pbs@ARFix@234:
	pbs@ARFix@235:
	pbs@ARFix@236:
	pbs@ARFix@237:
	pbs@ARFix@238:
	pbs@ARFix@239:
	pbs@ARFix@240:
	pbs@ARFix@241:
	12.0:
	12.1:
	12.2:
	12.3:
	12.4:
	12.5:
	12.6:
	12.7:
	12.8:
	12.9:
	12.10:
	12.11:
	12.12:
	12.13:
	12.14:
	12.15:
	12.16:
	12.17:
	12.18:
	12.19:
	12.20:
	12.21:
	12.22:
	12.23:
	12.24:
	12.25:
	12.26:
	12.27:
	12.28:
	12.29:
	12.30:
	12.31:
	12.32:
	12.33:
	12.34:
	12.35:
	12.36:
	12.37:
	12.38:
	12.39:
	12.40:
	12.41:
	12.42:
	12.43:
	12.44:
	12.45:
	12.46:
	12.47:
	12.48:
	12.49:
	12.50:
	12.51:
	12.52:
	12.53:
	12.54:
	12.55:
	12.56:
	12.57:
	12.58:
	12.59:
	12.60:
	12.61:
	12.62:
	12.63:
	12.64:
	12.65:
	12.66:
	12.67:
	12.68:
	12.69:
	12.70:
	12.71:
	12.72:
	12.73:
	12.74:
	12.75:
	12.76:
	12.77:
	12.78:
	12.79:
	12.80:
	12.81:
	12.82:
	12.83:
	12.84:
	12.85:
	12.86:
	12.87:
	12.88:
	12.89:
	12.90:
	12.91:
	12.92:
	12.93:
	12.94:
	12.95:
	12.96:
	12.97:
	12.98:
	12.99:
	12.100:
	12.101:
	12.102:
	12.103:
	12.104:
	12.105:
	12.106:
	12.107:
	12.108:
	12.109:
	12.110:
	12.111:
	12.112:
	12.113:
	12.114:
	12.115:
	12.116:
	12.117:
	12.118:
	12.119:
	12.120:
	12.121:
	12.122:
	12.123:
	12.124:
	12.125:
	12.126:
	12.127:
	12.128:
	12.129:
	anm12:
	12.EndLeft:
	12.StepLeft:
	12.PauseLeft:
	12.PlayLeft:
	12.PlayPauseLeft:
	12.PauseRight:
	12.PlayRight:
	12.PlayPauseRight:
	12.StepRight:
	12.EndRight:
	12.Minus:
	12.Reset:
	12.Plus:
	pbs@ARFix@242:
	pbs@ARFix@243:
	pbs@ARFix@244:
	pbs@ARFix@245:
	pbs@ARFix@246:
	pbs@ARFix@247:
	pbs@ARFix@248:
	pbs@ARFix@249:
	pbs@ARFix@250:
	pbs@ARFix@251:
	pbs@ARFix@252:

