Chapter 16
Change of Numéraire and Forward
Measures

Change of numéraire is a powerful technique for the pricing of options under
random discount factors by the use of forward measures. It has applications
to the pricing of interest rate derivatives and other types of options, including
exchange options (Margrabe formula) and foreign exchange options (Garman-
Kohlagen formula). The computation of self-financing hedging strategies by
change of numéraire is treated in Section 16.5, and the change of numéraire
technique will be applied to the pricing of interest rate derivatives such as
bond options and swaptions in Chapter 19.
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16.1 Notion of Numéraire

A numéraire is any strictly positive (F;)ier,-adapted stochastic process
(N¢)ter. that can be taken as a unit of reference when pricing an asset
or a claim.

In general, the price S; of an asset, when quoted in terms of the numéraire
Ny, is given by

g .5

t = Nt’

Deterministic numéraire transformations are easy to handle, as change of

numéraire by a constant factor is a formal algebraic transformation that

does not involve any risk. This can be the case for example when a currency

t>0.
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is pegged to another currency,* for example the exchange rate of the French
franc to the Euro was locked at €1 = FRF 6.55957 on 31 December 1998.

On the other hand, a random numéraire may involve new risks, and can
allow for arbitrage opportunities.

Examples of numéraire processes (Ny)er, include:
- Money market account.

Given (r4)er, a possibly random, time-dependent and (F;)ier, -adapted
risk-free interest rate process, let!

t
N; :=exp <f0 7‘st> .

In this case,
~ S. t
5 = Tvtt =e lorsdsg,  t>0,

represents the discounted price of the asset at time 0.

- Currency exchange rates

In this case, Ny := Ry denotes e.g. the EUR/SGD (EURSGD=X) exchange
rate from a foreign currency (e.g. EUR) to a domestic currency (e.g. SGD),
i.e. one unit of foreign currency (EUR) corresponds to R; units of local
currency (SGD). Let
~ St
St = —, t>0,
t R,
denote the price of a local (SG) asset quoted in units of the foreign currency
(EUR). For example, if B, = 1.63 and S; = S$1, then
5 S 1
St =— = —= x$1 ~€0.61
T Wik ’
and 1/ Ry is the domestic SGD/EUR exchange rate. A question of interest
is whether a local asset $S;, discounted according to a foreign risk-free
rate r/ and priced in foreign currency as

il S
Crti

—rfta
=e St
Ry ’

can be a martingale on the foreign market.

* Major currencies have started floating against each other since 1973, following the end
of the system of fixed exchanged rates agreed upon at the Bretton Woods Conference,
July 1-22, 1944.

t “Anyone who believes exponential growth can go on forever in a finite world is either
a madman or an economist”, K.E. Boulding (1973), page 248.
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My foreign currency account Sy grew by 5%

My foreign currency account St grew by 5% this year.

this year.

Q: Did | achieve a positive return? The foreign exchange rate dropped by 10%.

A Q: Did | achieve a positive return?

A:

(a) Scenario A. (b) Scenario B.

Fig. 16.1: Why change of numéraire?

- Forward numéraire.

The price P(t,T) of a bond paying P(T,T) = $1 at maturity T can be
taken as numéraire. In this case, we have

Ni:=P(t,T) = E* [cfftT”ds

]-'t], 0<t<T.

Recall that

t T

ts e~ homsdspt, T) = E* [e*fu rsds ]—‘t] . 0<t<T,
is an F- martingale.
- Annuity numéraire.
Processes of the form

n
Ny = P(t,To,Tp) := Y (Te = Te—1) P(t, Tx), 0 <t < T,
k=1

where P(t,T1), P(t,T»),..., P(t,T;) are bond prices with maturities 71 <
Ty < --- < T, arranged according to a tenor structure.

- Combinations of the above: for example a foreign money market ac-

e
count eJo "s45 R, expressed in local (or domestic) units of currency, where
(rﬁ) teR, represents a short-term interest rate on the foreign market.

When the numéraire is a random process, the pricing of a claim whose value
has been transformed under change of numéraire, e.g. under a change of
currency, has to take into account the risks existing on the foreign market.

In particular, in order to perform a fair pricing, one has to determine a
probability measure under which the transformed (or forward, or deflated)
process Sy = S¢/ Ny will be a martingale, see Section 16.3 for details.
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t " g . .
For example, in case Ny := eJo 7295 g the money market account, the risk-

neutral probability measure IP* is a measure under which the discounted price
process

~ S, t
St = ﬁt = eifU TstSt, t> 07
t
is a martingale. In the next section, we will see that this property can be
extended to any type of numéraire.

See Exercises 16.5 and 16.6 for other examples of numéraires.

16.2 Change of Numéraire

In this section we review the pricing of options by a change of measure asso-
ciated to a numéraire N, cf. e.g. Geman et al. (1995) and references therein.

Most of the results of this chapter rely on the following assumption, which
expresses absence of arbitrage. In the foreign exchange setting where Ny =
Ry, this condition states that the price of one unit of foreign currency is a
martingale when quoted and discounted in the domestic currency.

Assumption (A). The discounted numéraire
t
ts My o= e~ Joredop,

is an Fi-martingale under the risk-neutral probability measure P*.

Definition 16.1. Given (Nt)te[oA,T] a numéraire process, the associated for-

ward measure D is defined by its Radon-Nikodym density

My N
dP* My Ny

(16.1)

—~ t
In particular, we note that IP = P* when N; := exp (fo T5d8> is the money

market account. Recall also that from Section 7.3, Relation (16.1) rewrites
as

]MT * —J"TrsdsNT
7

which is equivalent to stating that

E[F] = |

Q

dP = dP*,
F(w)dP(w)

T N-
= fQF(w)effo ”‘“Vzdﬂ’*(w}

T N-
—E* |FeJo msds 2T
[ R
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for all integrable Fp-measurable random variables F. More generally, by
(16.1) and the fact that the process

t
tes My = e~ Joms® N,

is an Fy-martingale under IP* by Assumption (A), we find that

* dﬁ\) _E* Nr —J'Trsds
E ap* ]:l =E |:Noe 0 ]:L
« | Mr

=k {Mo ft}

_M

T My

— N fireds g<t<T. (16.2)
No

In Proposition 16.5 we will show, as a consequence of next Lemma 16.2 below,
that for any integrable random claim payoff C' we have

* —jTr'sds _ A
E* |Ce™ ) Nr|F| = NE[C | F], 0<t<T.

Similarly to the above, the Radon-Nikodym density d]f" 7/ d]l"*]_-t of ]lA" £, with
respect to ]P‘ ', satisfies the relation

E[F | 7] = [ F(@)dP ()

d]P
_ |F
f dIP* d]P\ft( w)
dp
= [E* Fd]Pl*]:t Fil,
17

for all integrable Fp-measurable random variables F', 0 < ¢t < T. Note that
(16.2), which is Fi-measurable, should not be confused with (16.3), which is
Fr-measurable.

Lemma 16.2. We have

d]P|]:t, _ My _ e—LT rsds&

APz, My N
Proof. The proof of (16.3) relies on an abstract version of the Bayes for-
mula. For all bounded F;-measurable random variable G, by (16.2), the tower
property (A.33) of conditional expectations and the characterization (A.45)
in Proposition A.21, we have

0<t<T. (16.3)
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~ ~ PS N
E[GX] = B* |[GX ’fOTTSdSJ}
[GX] CXe N

— E* G&e_-ﬁ;”“dﬂE*[A —] udsNT‘]_—t:H
L No

dpP

. *
=E* |GE" | 5

Fi

Nr
E* {Xe S reds i ]-'tH

—F ¢ [)?e*ffrsds% ’]—'tH

dIP*

-F [GIE* [)?e—ff reds N1 )ﬂ” :
N
for all bounded random variables X , which shows that
~r o~ ~ T N-
E[X | 7] =FE* {Xe’ft d% ‘]:t:| ;
i.e. (16.3) holds. O

rt
We note that in case the numéraire N; = elo rsds

market account we simply have P = P*.

is equal to the money

Definition 16.3. Given (X;)icr, an asset price process, we define the pro-
cess of forward (or deflated) prices

X =2t 0<t<T. (16.4)
The process (Xt)felR

units of the numéraire N;. In the sequel, it will be useful to determine the
dynamics of (Xt) under the forward measure P. The next proposition

epresents the values at times ¢ of X, expressed in

teR
t
shows in particular that the process (efo rsds / Nt> is an Fi-martingale
teR4

under P.

Proposition 16.4. Let (Xt)ier, denote a continuous (Ft)ier, -adapted as-
set price process such that

t
ts e do rsds x| t >0,

is a martingale under P*. Then, under change of numéraire,

the deflated process ()?t)

Fi-martingale under ]IA’,

tefor] = (Xt/ Nit)eejo,r) of forward prices is an
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provided that ()A(‘)ze[oT
Proof. We show that

! is integrable under P.

X
]—'S} === 0<s<t, (16.5)

E
N,

B X
Ny’

using the characterization (A.45) of conditional expectation in Proposi-
tion A.21. Namely, for all bounded Fs-measurable random variables G we
note that using (16.2) under Assumption (A) we have

~1x] [ x P
IE[GNJ—]E G

- {GXt ap

Fi

N dIP*

|
|

dp

dpP*

R S

N, Fe

= E* |Ge Jorudult (16.6)

— E* Gei-l‘(f rudu

Xt
No
Xs
No} (167)
e | X [ P
- E' |GFE | o

N, Fs

|
|

}7 0<s<t,

— E* |E*
[ X, dP

N, dP*
Xs
N

oXs dp

N, ap |7

= E*

=E {G
where from (16.6) to (16.7)we used the fact that
t— e J‘Ot T"dSXt
is an F¢-martingale under IP*. Finally, the identity
X

E[GX,) =E [GN

~[ X, o~
t}:IE{Gﬁ}:]E[GXSL 0<s<t,

s

for all bounded Fs-measurable G, implies (16.5). O
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Pricing using change of numéraire

The change of numéraire technique is especially useful for pricing under ran-
dom interest rates, in which case an expectation of the form

“[em ¥ e | R

becomes a path integral, see e.g. Dash (2004) for an account of path integral
methods in quantitative finance. The next proposition is the basic result of
this section, it provides a way to prlCC an option with arbitrary payoff C

under a random discount factor e = J reds by use of the forward measure. It
will be applied in Chapter 19 to the pricing of bond options and caplets, cf.
Propositions 19.1, 19.3 and 19.5 below.

Proposition 16.5. An option with integrable claim payoff C € L*(Q,P*, Fr)
is priced at time t as

E* [efffrsdsc ‘ ]-'/,] = NE {N% ‘f,,] . 0<t<T, (16.8)

provided that C/ Ny € L' (Q, P, Fr).
Proof. By Relation (16.3) in Lemma 16.2 we have

E* [e—JLTTstC BB

dPx, N ‘ }
|Fe IVt
C Fi
dPt,, N
d]P|-Fz O

= N,E*
¢ dPry,

dPjy, Ny 7
C ~
=N fo 2P
A ‘]—' 0<t<T
— IVt NT t) X U=
Equivalently, we can write
C dllA’\f
N.E _ * |~ t
A [ \ft} NE' |5 ape |7
=E[e i mdc|R], o<isT
O
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Each application of the change of numéraire formula (16.8) will require to:

a) pick a suitable numéraire (Ng)er, satisfying Assumption (A),
b) make sure that the ratio C'/ Ny takes a sufficiently simple form,
¢) use the Girsanov theorem in order to determine the dynamics of asset

prices under the new probability measure P,

so as to compute the expectation under PP on the right-hand side of (16.8).

Next, we consider further examples of numéraires and associated examples
of option prices.

Examples:

a) Money market account.

b

=

N

t
Take Ny = elo T"d57 where (r¢)icr, is a possibly random and time-
dependent risk-free interest rate. In this case, Assumption (A) is clearly
satisfied, we have P = P* and dIP*/dPP, and (16.8) simply reads

E* {e*ftT“dsC\]-}] _ efotrst]E* [e—f[;rrsdsc‘]_-t] 7 0<t<T,

which yields no particular information.

Forward numéraire.

Here, Ny := P(t,T) is the price P(¢,T) of a bond maturing at time 7', 0 <
t

t < T, and the discounted bond price process (67 Jo TsdsP(t,T)) 0]

te(0,

is an Fy-martingale under IP*, i.e. Assumption (A) is satisfied and N; =

P(t,T) can be taken as numéraire. In this case, (16.8) shows that a random

claim payoff C' can be priced as

* —J'Trsds _ o
]E[et c\ft}_P(t,T)JE[cm], 0<t<T, (16.9)

since Ny = P(T,T) = 1, where the forward measure P satisfies

~ T
AP _ v, g P(T,T) _ e Jo et
= s = 16.10
a-~ ¢ PO,T) PO,T) (16.10)
by (16.1).
Annuity numéraires.
We take N
Np = > (T, = Te—1)P(t, Ti)
k=1

where P(¢,T1),...,P(t,T,)) are bond prices with maturities Ty < Ty <
-++ < T;,. Here, (16.8) shows that a swaption on the cash flow P(T,T,) —
P(T,T) — kNr can be priced as
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E* [ i 74 (P(T, T,) - P(T,T3) — sNr)* | 7]

<P(T, Tn)]\;TP(T,Tl) ~ H) " | ]:t:| 7

= NE

0<t<T< T, where (P(T,T,) — P(T,T1))/ Ny becomes a swap rate,

cf. (18.21) in Proposition 18.12 and Section 19.5.

Girsanov theorem

We refer to e.g. Theorem II1-35 page 132 of Protter (2004) for the following

version of the Girsanov Theorem.

Theorem 16.6. Assume that P s equivalent® to P* with Radon-Nikodym
density dIP/dIP*, and let (Wt)te[O,T] be a standard Brownian motion under

P*. Then, letting

ap
q)t::]E*{W ]:t:|, 0<t<T,
the process (ﬁ/\t)te[o 7 defined by

— 1
th = th - adq)t . th, 0 S t S T7
t

is a standard Brownian motion under IP.

In case the martingale (®)yc[o 7] takes the form

~t 1 ot
;= exp (7 JO sdWs — JO |w5|2ds> . 0<t<T,

dd; = —1pyDrdWy, 0<t<T,
the It6 multiplication Table 4.1 shows that Relation (16.12) reads
1
D
= Wi~ g (~DiW) - AW,

AWy = dW; — —ddy - dW;

=dW, +dt, 0<t<T,

(16.11)

(16.12)

* This means that the Radon-Nikodym densities d@/d]l’* and d]P*/dﬁ exist and are

strictly positive with IP* and f-probability one, respectively.

574

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html


https://personal.ntu.edu.sg/nprivault/indext.html

Notes on Stochastic Finance

and shows that the shifted process (W‘)te[o = (Wt + fot wsds)ie[o 7] is a

standard Brownian motion under P, which is consistent with the Girsanov
Theorem 7.3. The next result is another application of the Girsanov Theorem.

Proposition 16.7. The process (Wt)te[o ) defined by
= 1
th = th — ﬁdNt . th, 0 < t < T, (16.13)
t
is a standard Brownian motion under P.

Proof. Relation (16.2) shows that ®; defined in (16.11) satisfies

L[ aP
o, =E |:le* ]:t:|
Np 7J‘T -ds
_— * Tsas
=E {—0 e Jo Fi

M
No

t
e dorsds o<,

hence

N, t
A, = d <ﬁ;e*fu’ d)

N
—®rydt + ¢ Jo 75 5g (F;)

(o2
= —®urydt + —dN;
tredt + N, t)
which, by (16.12), yields
—~ 1
AWy = dWy — —dDy « dW;
D
1 [0
= th — at <7q>t7‘tdt -+ ﬁtht> . th
1
= dW; — —dNy « dW;
t N, t t)

which is (16.13), from Relation (16.12) and the Itd multiplication Table 4.1.
O

The next Proposition 16.8 is consistent with the statement of Proposi-
tion 16.4, and in addition it specifies the dynamics of (Xt) teR, under P
using the Girsanov Theorem 16.7. As a consequence, we have the next propo-
sition, see Exercise 16.1 for another calculation based on geometric Brownian

motion, and Exercise 16.10 for an extension to correlated Brownian motions.
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Proposition 16.8. Assume that (X;)iecr, and (N¢)ier, satisfy the stochas-
tic differential equations

dXy = reXpdt + 07 X;dW;, and  dNp = ryNydt + oY NydWy,  (16.14)

where (UtX)teIlh and (U{V)tGIR+ are (Fy)eRr, -adapted volatility processes and
(Wi)ier.. is a standard Brownian motion under P*. Then the forward (or

deflated) process (Xt)te[() = = (X¢/Nt)iepo,r) satisfies
dX; = (0f — V) XedW, (16.15)

hence ()A(t)tg[o,T] is given by the driftless geometric Brownian motion

- - t 1t
X = Xpexp (IO (oX — oM)W, — af

0(05705)2015), 0<t<T.

Proof. First, we note that by (16.13) and (16.14),

—~ 1
AWy = AW, — <= dNy - W, = dW, — oNdt, t>0,
t

is a standard Brownian motion under P. Next, by It6’s calculus and the It6
multiplication Table 4.1 and (16.14) we have

1 1 1

d| — | = ——5dNy+ —dN; + dN,
(Nt) N/,2 t+Ni; ' '

|Ut ‘

reNydt + of NydWy) + dt

1
N2(

_ ‘Uf |

reNedt + o N (dW + o dt)) + 7L dt

1

N2 (

= 7Ni(rtdt + ol dWy), (16.16)
t

hence

Xy
dX; =d
! <Nt>

7%“@1( >+dXt d<1>
Ny

Xy
reXedt + o7 XpdWy) — E(rtdt-i—afv AW, — |oYdt)

1
A
*Ni (reXedt + 0 XedWy) - (redt + o7 AWy — |0 [Pdt)

t
= Ni (nXtdt + otXXtth) — % (ndt + o'gvth)
: t
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Xi 2 Xt x N
dt— =t dt
+Nt | N(rt o}

X X X N2
=2t Xthf—tJtNthf—taixa,{vdt-Q—Xt‘gt =
Ny Ny N¢

Xy
- E(gtxdwﬁat AWy — o oV dt + |0 [2dt)

:5(\,5(0 -0} )th (U't -0} ) Nat
:X\t(a — 0} )th7

since dwt:thfo'tth,Ogth. O

We end this section with some comments on inverse changes of measure.

Inverse changes of measure

In the next proposition we compute the conditional inverse Radon-Nikodym
density dIP*/dIP, see also (16.2).

Proposition 16.9. We have

N *
E [d“i

No t
]-',} = EGXP (jo rsds> R 0<t<T, (16.17)

and the process

My No "t
— = —— . <t <
M, N, exp <J() nds)7 0<t<T,

is an Fi-martingale under P.

Proof. For all bounded and F;-measurable random variables F' we have,

5 {Fd]P
dp

|-Em
-2 [

Np T

_ R* " rds

=E {F N, exp < L rglé)}
A t

=E {Fﬁt exp <[0 rsds>] .

By (16.16) we also have
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1 t . 1 t ) N
d <ﬁt exp <j0 rsds>> A exp <fo r5d5> oy dWr,

which recovers the second part of Proposition 16.9, i.e. the martingale prop-

erty of
My 1 t
T TN, P <jo T5d5>

under P.

16.3 Foreign Exchange

Currency exchange is a typical application of change of numéraire, that illus-
trates the absence of arbitrage principle.

Let R; denote the foreign exchange rate, i.e. Ry is the (possibly fractional)
quantity of local currency that correspond to one unit of foreign currency,
while 1/ R; represents the quantity of foreign currency that correspond to a
unit of local currency.

Ry trf Discount Ry £yl
1 1 T i N (rf—rh)t
oca $ RO € Ro
1 e”f

Foreign —_

g RO R(J

Consider an investor that intends to exploit an “overseas investment oppor-
tunity” by

at time 0, changing one unit of local currency into 1/ Ry units of foreign
currency,

investing 1/ R on the foreign market at the rate f, which will yield the
amount !’ / Ry at time ¢t > 0,

changing back e”f/Ro into a quantity e“'th/Ro = N¢/ Ry of local cur-

a

Naod

b

NN

¢

rency.

. Singapore, Singapore @

DBS Treasures - Up To 7.20% p.a On Fixed Today Mon Tue
Deposits

Enjoy signature experiences,emergency medical assist & more
as a Global Indian. Exclusive rate of up to 7.20%" p.a. on IN

27°23° 28° 24° 28° 247

Fig. 16.2: Overseas investment opportunity.*
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In other words, the foreign money market account et is valued c”th on
the local (or domestic) market, and its discounted value on the local market
is Lo

e TR, > 0.
The outcome of this investment will be obtained by a martingale comparison

of e”‘th/ Ry to the amount ¢! that could have been obtained by investing
on the local market.

Taking

Nyi=e" Ry,  t3>0, (16.18)

as numéraire, absence of arbitrage is expressed by Assumption (A), which
states that the discounted numéraire process

t— eirltNt = eit(T!in)Rt

is an Ji-martingale under P*.

Next, we find a characterization of this arbitrage condition using the model
parameters 7, 7', u, by modeling the foreign exchange rates R; according to
a geometric Brownian motion (16.19).

Proposition 16.10. Assume that the foreign exchange rate Ry satisfies a
stochastic differential equation of the form

th = utht + UthWt, (1619)

where (Wi)ter, is a standard Brownian motion under P*. Under the absence
of arbitrage Assumption (A) for the numéraire (16.18), we have

p=rt—rt (16.20)
hence the exchange rate process satisfies
dRy = (r' — ") Ridt + o RydWy. (16.21)

under P*.

Proof. The equation (16.19) has solution
Rt _ RO e,uH»UWL*rizt/Q7 t> 0’

. . f
hence the discounted value of the foreign money market account e!” on the
local market is

* For illustration purposes only. Not an advertisement.
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! Uy gpf £l 2
e tr N, = e tritr R = Roe(r —rltp)t+oWi—o t/27 t>0.

Under the absence of arbitrage Assumption (A), the process e’(rl’rf)tRL =
et Ny should be an Fi-martingale under IP*, and this holds provided that
rf —r 4+ p = 0, which yields (16.20) and (16.21). O

As a consequence of Proposition 16.10, under absence of arbitrage a local
investor who buys a unit of foreign currency in the hope of a higher return
rf >> r will have to face a lower (or even more negative) drift

u:rlfrf<<0

in his exchange rate Ry. The drift 4 = r! — ¥ is also called the cost of carrying
the foreign currency.

The local money market account X; := et is valued e”l/ R; on the
foreign market, and its discounted value at time ¢ > 0 on the foreign market
is

(rt—rf)t X

e t £

— = — =X 16.22

Ry N, Ot (16.22)
_ i e(TL*’V‘f)t*ﬂt*O'Wf‘FO'zt/Q

Ry

_ i e(rl—rf)t—,ut—nﬁ/t—o'gt/Q
- )

Ry

where

_ 1
AWy = dWy — —d Ny« dW,
N

1
= dW; — —-dRy+ dW;
tT R t
= dW; — odt, t>0,
is a standard Brownian motion under P by (16.13). Under absence of arbi-

trage, the process e’(rl’mth is an Fy-martingale under P* and (16.22) is
an Fy-martingale under IP by Proposition 16.4, which recovers (16.20).
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library(quantmod)

getSymbols("EURTRY=X",src = "yahoo",from = "2018-01-01",to = "2021-12-31")

getSymbols("INTDSRTRM193N",src = "FRED")

Interestrate<- ' INTDSRTRM193N " ["2018-01-01::2021-31-12"]

EURTRY<-Ad("EURTRY=X"); myPars <- chart_pars();myPars$cex<-1.2

Cumulative<-cumprod(1+Interestrate/100/12)

normalizedfxrate<-1+(as.numeric(last(Cumulative))-1)*(EURTRY-as.numeric(EURTRY(1]))/
(as.numeric(last(EURTRY))-as.numeric(EURTRY [1]))

myTheme <- chart_theme();myTheme$col$line.col <- "blue"

dev.new(width=16,height=8)

chart_ Series(Cumulative,pars=myPars, theme = myTheme)

add_ TA(normalizedfxrate, col='black', lw =2, on = 1)

add_ TA(Interestrate, col='purple’, lw =2)

The above code plots an evolution of currency exchange rates compared with

the evolution of interest rates, as shown in Figure 16.3.

Cumulative 2018-01-01/2022-02-01

14 f‘/ﬂw
13
0 Sl SNV ettt

10
nterestrate 14.75

2018 2019 2020 2021

Jan ul Jan ul Jan

Fig. 16.3: Evolution of exchange rate vs. interest rate.*

ul ul
2018 2018 2019 2019 2020 2020 2021 2021 2021

2022

Proposition 16.11. Under the absence of arbitrage condition (16.20), the

inverse exchange rate 1/ Ry satisfies

1 rf—rl o =
() == e

under P, where (Ri)ier, is given by (16.21).

(16.23)

Proof. By (16.20), the exchange rate 1/ R; is written using Itd’s calculus as

1 1 1
d| =) = == (uRedt + o Ry dW}) + —- 02 R2dt
(Rt> R?(Nt +ohRy t)+Rt3‘7 t
2

nw—ao o

=27 qt— —aw,

Ry Rt
p o=
=—L dt— —dw,
Ry R !
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£l
rt—r o =
= dt — —dW,
Rt Rt ty
where (ﬁ/\t)telh is a standard Brownian motion under . O

Consequently, under absence of arbitrage, a foreign investor who buys a unit
of the local currency in the hope of a higher return r >>  will have to face
a lower (or even more negative) drift —u = rf — 7 in his exchange rate 1/ R;
as written in (16.23) under P.

Foreign exchange options

We now price a foreign exchange call option with payoff (Ry — x)* under
IP* on the exchange rate Rp by the Black-Scholes formula as in the next
proposition, also known as the Garman and Kohlhagen (1983) formula. The
foreign exchange call option is designed for a local buyer of foreign currency.

Proposition 16.12. (Garman and Kohlhagen (1983) formula for call op-
tions). Consider the exchange rate process (Ry)ier, given by (16.21). The
price of the foreign exchange call option on Rp with maturity T and strike
price k > 0 is given in local currency units as

e T E* [(Rp— k)T | Fi] = e T " R® (1, Ry) — ke T D _(1, Ry)
(16.24)

0<t<T, where

d>+(t,x) =

o [ losle/r) + (T = t)(r =t + 02 /2)
oVT —t )

D_(tz) = <log(x/h~) + (T —t)(rt—F 02/2)> |

oyl —t

Proof. As a consequence of (16.21), we find the numéraire dynamics

AN, = d(e'™ Ry)
=f ct'rthdt + c”’det
=f etTthdt + a'etrthth
= rINydt + o N dW,.

Hence, a standard application of the Black-Scholes formula yields
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e TOME (Rr =) | F) = e -WE*[( TN —w) | )
e~ T e~ B [(Np — keT") " | F]

—Tt log(Nee T /fi)+(r+02/2)( t)
‘ (th)( T —1

oI =T g (10g(NteT”f/H + (rt—o?/2)(T t)))

VI —t
Tt <th> <]Og(Rf/K/ (T—t)(rt =7 +02/2)>

oT —1
o TH (Tt g <log<R//»e> + (-t - - am)))

o/T —t
= e TR, (t,Ry) — e T D_(t,Ry).
A similar conclusion can be reached by directly applying (16.21). g

Similarly, from (16.23) rewritten as

trt trl trl -
d(e >_rfe dt — oS dw,
Ry

Ry Ry

a foreign exchange put option with payoff (1/x—1/Rz)™ can be priced under
P in a Black-Scholes model by taking et /Ry as underlying asset price, rf as
risk-free interest rate, and —o as volatility parameter. The foreign exchange
put option is designed for the foreign seller of local currency, see for example
the buy back guarantee* which is a typical example of a foreign exchange

put option.

Proposition 16.13. (Garman and Kohlhagen (1983) formula for put op-
tions). Consider the exchange rate process (Ry)ier, given by (16.21). The
price of the foreign exchange put option on Rp with maturity T and strike
price 1/k > 0 is given in foreign currency units as

;t} (16.25)

* Right-click to open or save the attachment.
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0<t<T, where

= <_log(m) (@) - 02/2)> :

oVl —t

and

O_(t,x) =D (_log(m) + (T(;\/tT)(%f[ o 02/2)> |
CTrl CTTI +
(n RT)

Proof. The Black-Scholes formula (6.12) yields
ft]
1 ; 1) e (-0 1
=—e TN ({,—)-——@, (t,—
ne ( "R, R; +1{b R’

11y
Kk Rp
which is the symmetric of (16.24) by exchanging Ry with 1/R;, and r with
f O
rd.

o~ (T-t)r' R

]:t:| _ ef(Tft)rfC—Trl]E

Call/put duality for foreign exchange options

f . . .
Let N; = e!™ Ry, where R; is an exchange rate with respect to a foreign
currency and 7y is the foreign market interest rate.

Proposition 16.14. The foreign exchange call and put options on the local
and foreign markets are linked by the call/put duality relation

(-5 17]
(16.26)

between a put option with strike price 1/x and a (possibly fractional) quantity
1/(kR:) of call option(s) with strike price k.

e_(T_t)Tl]E*[(RT _ K/)‘F |]:t} _ KRte_(T_t)Tf]/E\

Proof. By application of change of numéraire from Proposition 16.5 and
(16.8) we have

B gy (=" | 7] = g0 - ),
hence
o (T <} 7i>+ ‘fz — (TR [L (Rp—r)* ‘}‘z}
% Ry KRy
LB [ - |7
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1 P (T— )

= E (B - )| A
1 s

= T E (Rt

O

In the Black-Scholes case, the duality (16.26) can be directly checked by
verifying that (16.25) coincides with

1 ot
e TR (R - |
= Le—(T—t)rl o T [(eTTfRT _ ﬁeTrf)Jr |«7‘—t}
HRt
= KLRtC*(Tft)rl o~ TriE* [(Nr - HCT7-f)+ | 7]
1
= — (e TR (t, Ry) — ke T0" @ (1, Ry))
lﬁRt
1 ¢ o= (T-t)r!
= e T=I7® (t, Ry) — @ (t, R,
oe < (t, Ry) i < (t,Re)
1 ‘ 1) e (T 1
_ L (Tt -y y_ = " .
e (1) ST (1)
where log(z/k) + (T —t)(r' —rf +02/2)
D (t,z) =P T ;
T —
and
log(z/K) + (T —t)(rt —rf — 02 /2)
DC (t, ) :—q>< U\/% .
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“Local” market “Foreign” market
Measure r* P
iy £
Discount factor trs e "t trs e "t
1 f
1 1 X S (r'=rh)t

Martingale tes e TN, = et TR, ts ot =X, =2

Nt Rt

~ +
Option price (IO g [(RT — k)" ‘ ]:t} e~ (T-0'g (l - i)
k Rp

]

Application [Local purchase of foreign currency| Foreign selling of local currency

Table 16.1: Local vs. foreign exchange options.

Example - Buy back guarantee

The put option priced

N I
e (g) 1

1 ¢ 1 e~ (T 1
=—e T (¢ — )" @&, (t,—
K€ - ( "R, R TR

on the foreign market corresponds to a buy back guarantee* in currency

exchange. In the case of an option “at the money” with x = R; and 7! =
rf ~ 0, we find

(i) 1] - e (o ()0 (2457)

R:  Rr R; 2 2
1 oyl —t
= x(2o( X "")—1).
(2 ("5) )

For example, let R; denote the USD/EUR (USDEUR=X) exchange rate from
a foreign currency (USD) to a local currency (EUR), 4.e. one unit of the
foreign currency (USD) corresponds to Ry = 1/1.23 units of local currency
(EUR). Taking T'—t = 30 days and o = 10%, we find that the foreign
currency put option allowing for the foreign sale of one EURO back into
USDs is priced at the money in USD as

* Right-click to open or save the attachment.
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(L _ L>+ ‘]—‘t} = 1.23(20(0.05 x /31/365) —1)

R, Rr
= 1.23(2 x 0.505813 — 1)
= $0.01429998

per USD, or €0.011626 per exchanged unit of EURO. Based on a displayed
option price of €4.5 per unit of foreign currency (USD), in order to make the
contract fair this would translate into an average amount of

4.5

——— ~ N
0.011626 387

exchanged per contract at the counter by the foreign customers subscribing
to the buy back guarantee.

16.4 Pricing Exchange Options

Based on Proposition 16.4, we model the process )?t of forward prices as a
continuous martingale under P, written as

dX; =5dW,,  t>0, (16.27)

where (Wt) teR, is a standard Brownian motion under P and (G1)ter At
an (F;)¢er, -adapted stochastic volatility process. More precisely, we assume

that ()?L) has the dynamics

teR,
dXy = 5¢(X,)dW, (16.28)
where z — 0;(z) is a local volatility function which is Lipschitz in z, uni-

formly in ¢ > 0. The Markov property of the diffusion process ()/(\'t) teR,

cf. Theorem V-6-32 of Protter (2004), shows that when g is a deterministic
payoff function, the conditional expectation E[§(Xr) | F] can be written as

E[§(X7) | R] =C(t,X:), 0<t<T,
where (t,2) is a (measurable) function of ¢ and X Consequently, a vanilla

option with claim payoff C' := NTﬁ()?T) can be priced from Proposition 16.5
as

=NC(t, X)), 0<E<T. (16.29)
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In the next Proposition 16.15 we state the Margrabe (1978) formula for the
pricing of exchange options by the zero interest rate Black-Scholes formula.
It will be applied in particular in Proposition 19.3 below for the pricing
of bond options. Here, (N¢)ier, denotes any numéraire process satisfying
Assumption (A).

Proposition 16.15. (Margrabe (1978) formula). Assume that at()?t) =

G(t) Xy, i.e. the martingale ()A(t) is a (driftless) geometric Brownian

te[0,T)
motion under P with deterministic volatility (G(t)),e[o,r)- Then we have

E* [e_-[ijT‘“ds (XT — KNT)+ ‘ .Ft:| = Xﬁbg (t, )?t) - IQNt@g (t,ft),
(16.30)

t €[0,T], where

v(t,T) 2
(16.31

log(z/k)  wv(t,T) log(z/k) w(t,T)
0 — ’ 0 — )
<I>+(t,x)7<l>< o6 T) + 2 , ()= ——+~

T
and v2(t,T) = L 52(s)ds.
Proof. Taking g(z) := (x — k)T in (16.29), the call option with payoff

(X7 — kNp)* = Np(Xp — k)"

— Ny (;?t exp <LTa(t)th - % LT \8(t)\2dt> - n>+ :

and floating strike price KNy is priced by (16.29) as

B [om I rt (g — uNp) | B = B [en I o Ng (X7 - )| 7]
= NE[(Rr—#)*| 7
= NC(t, Xe),
where the function C(t, X;) is given by the Black-Scholes formula
C(t,z) = 2@ (t, 2) — k®° (¢, ),

with zero interest rate, since (Xt) is a driftless geometric Brownian

te[0,T]
motion which is an F;-martingale under P, and Xp is a lognormal random

T
variable with variance coefficient v2(t,T) = L 52(s)ds. Hence we have
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E [em b reds (Xp — ) | 7| = MC(t, %)
= N X @Y (4, Xy) — kN @0 (8, Xy),

t>0. |
In particular, from Proposition 16.8 and (16.15), we can take 5(t) = ofX — oY
when (07")ier, and ({¥)ier, are deterministic.

Examples:

a) When the short rate process (7'(t))te[07T] is a deterministic function of time

and Ny = cft 5)ds ,0<t < T, we have P = P* and Proposition 16.15
yields the Merton (1973) ‘zero interest rate” version of the Black-Scholes
formula

e fz dS]E* [(XT — lﬁ + |]:/}
R N (R o B R S (R S O

where @ and ®Y are defined in (16.31) and (X;);er, satisfies the equa-
tion

dx dX
L= p()dt+5(8)dWy, e 7‘ =5(t)dW;, 0<t<T.
t t

b) In the case of pricing under a forward numéraire, i.e. when Ny = P(t,T),
€ [0,T], we get

E* |:07J‘t,T rsds (XT — H)Jr | ]:t} = th)g (t, )?t) — I{P(t,T)q)(l (t, )’(:t),

0 <t <T,since Np = P(T,T) = 1. In particular, when Xy = P(t,S)
the above formula allows us to price a bond call option on P(T, S) as

E* [cfff rads (p(T,8) — )" |]—'t] = P(t,8)®"(t, X;) — kP(t, T)®" (1, X}),

0 <t < T, provided that the martingale X, = P(t,S)/P(t,T) under P
is given by a geometric Brownian motion, cf. Section 19.2.

16.5 Hedging by Change of Numéraire

In this section we reconsider and extend the Black-Scholes self-financing hedg-
ing strategies found in (7.42)-(7.43) and Proposition 7.13 of Chapter 7. For
this, we use the stochastic integral representation of the forward claim payoffs
and change of numéraire in order to compute self-financing portfolio strate-
gies. Our hedging portfolios will be built on the assets (X¢, N¢), not on X;
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and the money market account By = ofoz rsds extending the classical hedg-
ing portfolios that are available in from the Black-Scholes formula, using a
technique from Jamshidian (1996), cf. also Privault and Teng (2012).

Consider a claim with random payoff C, typically an interest rate deriva-
tive, cf. Chapter 19. Assume that the forward claim payoff C/Np € L*(Q)
has the stochastic integral representation

6::]\% JE[ } f@Xm, (16.32)

where ()?t)te[o,T] is given by (16.27) and (Eat)te[oﬂ is a square-integrable

adapted process under ]1/'\’7 from which it follows that the forward claim price

W
V::———]E*[ -1 fsdéc‘.;f]: —‘f ; 0<t<T,
TN, TN, ' k ¢

is an F¢-martingale under ]I?’, that can be decomposed as

A IR AN i R " GudX 0<t<T 16.33
t— [ ‘ t}* NiT +IO¢S S xtx 4. ( . )

The next Proposition 16.16 extends the argument of Jamshidian (1996) to
the general framework of pricing using change of numéraire. Note that this
result differs from the standard formula that uses the money market account

B = eJo msds for hedging instead of Ny, cf. e.g. Geman et al. (1995) pages 453-
454. The notion of self-financing portfolio is similar to that of Definition 5.8.

Proposition 16.16. Letting n; = l7t 7)?“;5,5, with $t defined in (16.33),
0 <t < T, the portfolio allocation
(d)ty ;]\t) te[0,T)

with value N
Vi = ¢ Xt + Ny, 0<t<T,

is self-financing in the sense that
dVy = ¢ud X, + d N,

and it hedges the claim payoff C, i.e.
~ T
Vi = ¢ X, + N, = E* [e‘-ﬁ rads ‘ }}] . 0<t<T.  (16.34)

Proof. In order to check that the portfolio allocation ($t777,5) 0.7 hedges
the claim payoff C' it suffices to check that (16.34) holds since by (16.8) the

price V; at time ¢ € [0, T] of the hedging portfolio satisfies
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~ T s
Vi = NiV, = E* {07L s bC‘]—}], 0<t<T.

Next, we show that the portfolio allocation (q?h ﬁt) is self-financing. By

t€[0,77]
numéraire invariance, cf. e.g. page 184 of Protter (2001), we have, using the
relation dV; = ¢dX; from (16.33),

av; = d(N: Vi)
= V,dN; + NydV; + dN, - dV,
= VAN, + N;p1dX; + $idN; » d X,
= e X1dNy + Nidyd Xy + ded Ny » d X + (‘Z - @J?z)dNt
= ¢7td(Nth) + Ned Ny
= $rd Xy + TsdNy.

O

We now consider an application to the forward Delta hedging of European-
type options with payoff C = NTg(XT) where § : R — R and (Xt)te]m
has the Markov property as in (16.28), where 0 : R4 x R is a deterministic

function. Assuming that the function C(t, ) defined by
7= B[3(%r) | 5] - Ot %)

is C2 on R4, we have the following corollary of Proposition 16.16, which
extends the Black-Scholes Delta hedging technique to the general change of
numéraire setup.

Corollary 16.17. Letting ny = C(t,)A(t) Xti? (t Xt) 0<t<T, the
z
portfolio allocation R
oC , o
— (¢, X4), 7
(50 6 X07) o

with value

aC
Vi = Ne Ny +Xf8

is self-financing and hedges the claim payoff C = NTE()A(T)‘

(t, X)), t=0,

Proof. This result follows directly from Proposition 16.16 by noting that
by It6’s formula, and the martingale property of V; under IP the stochastic
integral representation (16.33) is given by

O}

3 )

=9(X7)

%>
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7 8C
0o ot

aC
jo oo (1, X1)dX,

T 920

= 00, Xo) + 2Jo 022

(¢, Xt)d + (¢, Xt)m dt

+

~ s T 9C
=C(0,X0)+ [ o o

C
<t <
[N +j0 qﬁtht, 0<t<T,

(t, X1)dX;

Il
=)}

hence R
-~ 9C, ~
b=

In the case of an exchange option with payoff function
C=(Xr—rNp)" =Np(Xr—r)"
on the geometric Brownian motion ()?t)te[() 1) under P with

5(Xy) =3t Xs, (16.35)

where (a(t))te[o,T] is a deterministic volatility function of time, we have the

following corollary on the hedging of exchange options based on the Margrabe
(1978) formula (16.30).

Corollary 16.18. The decomposition
E* [e—ff s (Xp = iNp) | A = X0®Y (1, %) - oY (1, K

yields a self-financing portfolio allocation (CIZQ (t, )A(t), —k®Y (t, )A(t) telo.1) in
the assets (Xy, Ni), that hedges the claim payoff C = (Xp — kNp)™T.
Proof. We apply Corollary 16.17 and the relation

O = (ta),  weR,

for the function C(t,z) = 7@ (t,2) — kDY (t,2), cf. Relation (6.17) in
Proposition 6.4. d

Note that the Delta hedging method requires the computation of the function
C(t,z) and that of the associated finite differences, and may not apply to
path-dependent claims.

Examples:
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a) When the short rate process (r())tejo,r) is a deterministic function of

b

=

time and NV; = eft s)ds , Corollary 16.18 yields the usual Black-Scholes
hedging strategy

(ot ll 0 x0)

= (@9 (t, N dSX/) N 8)ds 0 (¢, i X’))te[oﬁT]’

. fL r(s)ds i +
in the assets (X¢, eJo ), that hedges the claim payoff C' = (X7 — k)™,
with

og(x/K T (s)ds —#)o?
d>+(t,x);_q><1 g(x/ HLU%HT t) /2)7

and

P_(t,z) =P

ovT —1
In case Ny = P(t,T) and X; = P(¢,5), 0 <t < T < S, Corollary 16.18
shows that when (Xt)te[o 7]

(16.35) under PP, the bond call option with payoff (P(T,S) — k)" can be
hedged as

(log(x//{) + ftT r(s)ds — (T — t)02/2> .

is modeled as the geometric Brownian motion

T ~ ~
E* [e= )i s (P(T,8) — k)" |H] = P(t, )@ (t, X;) — kP(t, T)®_ (1, X))
by the self-financing portfolio allocation

((I)+ (t, Xt), —kP_ (t, Xt))tG[O,T]
in the assets (P(t, S), P(t,T)), i.e. one needs to hold the quantity @4 (¢, X¢)

of the bond maturing at time S, and to short a quantity k®_ (t,)A(t) of
the bond maturing at time 7.

Exercises

Exercise 16.1 Let (By)icr. be a standard Brownian motion started at 0 un-
der the risk-neutral probability measure IP*. Consider a numéraire (Ny)icr,
given by

Ny := NoeBimmPt/2 >,

and a risky asset price process (X;);cr. given by
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X;:=Xo e”Bf_”zt/Q, t=0,

in a market with risk-free interest rate r = 0. Let PP denote the forward
measure relative to the numéraire (IV;);er, , under which the process X; :=
X/ Ny of forward prices is known to be a martingale.

a) Using the It formula, compute

—~ Xt
Xy = —
iz, d(Nt>
_ X0 (o-mBi—(c?—n?)t/2
= Nod(e )

b) Explain why the exchange option price E*[(X7 — AN7)T] at time 0 has
the Black-Scholes form

E*[(Xr — /\NT)Aﬂ ) (16.36)
 xo <log (Xo/N) aﬁ) Ny <1og (Xo/N) aﬁ) .

—
VT 2

VT 2
(i) Use the change of numéraire identity
E*[(Xr — AN7) ] = NoE[(X7 - A) 7]
(ii) The forward price X, is a martingale under the forward measure P

relative to the numéraire (Ng)ser, -

¢) Give the value of 7 in terms of o and 7.

i (1) (2)
Exercise 16.2 Let (B, )te]R+ and (B, )te]R+
nian motions started at 0 under the risk-neutral probability measure IP*, with
correlation Corr(Bgl),Bt(Q)) = pmin(s, ), i.e. dBt(l) . dBt(Q) = pdt. Consider

and (St(Q)) teR, given by the geometric Brownian

be correlated standard Brow-

two asset prices (St(l))

teR,
motions
(1) (2) o
St(l) P S(()U e”+031 —(72’//2, and St(2> = Sng) erH»nBz —1721,/27 t>0.
P . ! ; drai — (g2
Let IP; denote the forward measure with numéraire (Ng)ier, := (S;) 1eR,

and Radon-Nikodym density

B (2 .
I S
ap* 5@
0
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a) Using the Girsanov Theorem 16.7, determine the shifts (ét(l)) teR, and

(B?) ex, of (B)
motions under ]IA’Q .

b) Using the It6 formula, compute

_ M
ast =d (%)
S

t

and (Bt(2>) which are standard Brownian

teRy teRy

(1)
- SO d(e"’Bt(l)*”BizL(UQ’ﬁ)t/z),

= 582)

and write the answer in terms of the martingales dét(l) and dﬁt&)‘
¢) Using change of numéraire, explain why the exchange option price

e TR (s - asf) ]

at time 0 has the Black-Scholes form

a(1) .
It A v
OTTE*KS¥)AS¥U+]—-s§%b<(g(ﬁ)’/)4”T)

VT 2
s (bg B aﬁ)
VT 2 )’

where the value of & can be expressed in terms of o and 7.

Exercise 16.3  Consider two zero-coupon bond prices of the form P(t,T) =
F(t,r¢) and P(t,S) = G(t, 1), where (r¢)icr, is a short-term interest rate
process. Taking N; := P(t,T) as a numéraire defining the forward measure
P, compute the dynamics of (P(t, S))te[o,T] under P using a standard Brow-

nian motion (/VIZ) te[0.7] under P.

Exercise 16.4 Forward contracts. Using a change of numéraire argument for
the numéraire N; := P(t,T), t € [0,T], compute the price at time ¢ € [0, 7]
of a forward (or future) contract with payoff P(T,S) — K in a bond market
with short-term interest rate (r);cr, . How would you hedge this forward
contract?

Exercise 16.5 (Question 2.7 page 17 of Downes et al. (2008)). Consider a
price process (S¢)ier. given by dS; = rSydt 4+ 0.S;dB; under the risk-neutral
probability measure P*, where r € R and ¢ > 0, and the option with payoff
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ST(ST — ‘K)Jr = NiaX(ST(ST — K), O)

=+

at maturity 7.

a

Naod

Show that the option payoff can be rewritten as
(Sr(Sr— K))* = Np(Sr - K)*

for a suitable choice of numéraire process (N¢)ye(o.7)-

Rewrite the option price e~ (T=Y7E*[(Sp(Sp — K))* | Ft] using a for-
ward measure P and a change of numéraire argument. R

¢) Find the dynamics of (S;)icr, under the forward measure P.

d) Price the option with payoff

b

=

ST(ST — K)+ = I\/IaX(ST(ST — K),O)

at time ¢ € [0, T using the Black-Scholes formula.
Exercise 16.6 Consider the risk asset with dynamics dS; = rSidt + oS dWy
with constant interest rate r € R and volatility o > 0 under the risk-neutral

measure IP*. The power call option with payoff (S} — K™)", n > 1, is priced
at time ¢ € [0,7] as

Cf(Tft)r]E* [(S% _ I(n)+ |]_-t}
= o B [SRLis, s hy | Fe) — K" e T TE [Lg, s iy | F)
under the risk-neutral measure P*.

dP
a) Write down the density P using the numéraire process

N; = S;LC7(7L71)7L02t/2*(n*1)7't7 te [O,T]

b) Construct a standard Brownian motion Wt under .
¢) Compute the term e~ (T-OrEgx [S%]I{STM(} |]-'t} using change of numéraire.
Hint: We have
P*(Sr 2> K | Ft) = E* [L{g> k3 | Fi]
o <1og(st/K) + (= 0?/2)(T - t)>
oVT —t '

d) Price the power call option with payoff (S% — K™)* at time ¢ € [0, 7.

Exercise 16.7 Bond options. Consider two bonds with maturities 7" and S,
with prices P(¢,T) and P(t,S) given by
596 O
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dP(t,T) T
7P(t,T) = ngt‘f’(:t dwt,
and dP(t,S)
t, _ S
7P(t7 S) = Ttdt + Ct d”t,

where (CT(S))sE[QT] and (CS(S))SE[O"S] are deterministic volatility functions
of time.

a) Show, using Itd’s formula, that

d(P(t,S)) _ P(t,5)

pary) = P S O =< W),

is a standard Brownian motion under IP.

where (W, ) teR.s

b) Show that

P(r.8) = pretre (7€) - T - 5 [165(6) - T )Pas)

Let P denote the forward measure associated to the numéraire

N;:=P#T), 0<t<T.

o
~

Show that for all S,T > 0 the price at time ¢
E* [e’ i ”dS(P(T, S)—r)* | ft]

of a bond call option on P(T,S) with payoff (P(T,S) — x)* is equal to

{ Jrds (p(r,8) — r)* | 7] (16.37)
( S) v 1 P(t,S)
P(t,S9)® (2 + —log SPT) KkP(t,T)D 5 +U log P(LT) )
where
v = j 1¢%(s) = ¢ (s)2ds.
d) Compute the self-financing hedging strategy that hedges the bond option

using a portfolio based on the assets P(¢,T) and P(t,S).

Exercise 16.8 Consider two risky assets S7 and S2 modeled by the geometric
Brownian motions

Si(t) = etk and  Sy(t) = e®2WrtHt y >0, (16.38)
where (W;)er., is a standard Brownian motion under P.
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a) Find a condition on 7, and o2 so that the discounted price process
e "S5 (t) is a martingale under IP.

b) Assume that r — py = (7%/2, and let

=

X, = 3926, (1), ¢>o0.

Show that the discounted process e~ "X, is a martingale under P.
Taking N; = Sa(t) as numéraire, show that the forward process X () =
Xi/ Ny is a martingale under the forward measure P defined by the Radon-
Nikodym density

o
~

P r Ny
P~ Ny

Recall that .
Wy := Wi — o9t

is a standard Brownian motion under IP.

d) Using the relation

=

e TE($1(T) - So(T) ] = Nl [T ST

compute the price
e TEM(S1(T) = 52(T) "]

of the exchange option on the assets S1 and Sa.

Exercise 16.9 Compute the price ¢~ (797 E* (L{gy>ny | ] at time t € 0,7
of a cash-or-nothing “binary” foreign exchange call option with maturity 7’
and strike price k£ on the foreign exchange rate process (Ry)icr, given by

dR; = (r' = ") Rydt + o RedWr,

where (W;)ieRr, is a standard Brownian motion under P*.
Hint: We have the relation

X HS ) = u—log(k/x)
Pl o ()

for X ~ N(0, Var[X]) a centered Gaussian random variable.

Exercise 16.10 Extension of Proposition 16.8 to correlated Brownian mo-
tions. Assume that (S¢)er, and (Ni)ier, satisfy the stochastic differential
equations
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dS; = 1 Sydt + 07 S dWS,  and ANy = nNdt + o NedWN,
where (W)ier, and (W{)ier, have the correlation
AW« daw ¥ = pdt,
where p € [-1,1].
a) Show that (W}¥);cgr, can be written as
WN = oW+ V1= p22W;, >0,

where (W;)icr, is a standard Brownian motion under IP*, independent
of (Wts)te][{+-
b) Letting X; = S;/ N, show that dX; can be written as

dXy = (re—m+ (0)? = pol o} ) Xodt + 51 X, dWY

where (W{X)er . is a standard Brownian motion under IP* and & is to

be computed.
Exercise 16.11  Quanto options (Exercise 9.5 in Shreve (2004)). Consider an
asset priced Sy at time ¢, with

dS; = rSydt 4+ %S, dW?,
and an exchange rate (Ry)ier, given by
dR; = (r — ) Redt + o RdWif,
from (16.20) in Proposition 16.10, where (W{%),cRr, is written as
W= oW+ V1=p2W,  t>0,

where (W)ier, is a standard Brownian motion under IP*, independent of
(W)ier, , i-¢., we have

AWE .« aw® = pdt,

where p is a correlation coefficient.
a) Let
a=rl—rf 4 pofo¥ — (oF)?

and Xy = e®S;/ Ry, t > 0, and show by Exercise 16.10 that dX; can be
written as
dX; = rXdt + 5 X dW;X,
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where (WX )icr, is a standard Brownian motion under P* and & is to be
determined.
b) Compute the price

of the quanto option at time ¢ € [0,7].
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