
Chapter 4
Brownian Motion and Stochastic Calculus

Brownian motion is a continuous-time stochastic process having stationary
and independent Gaussian distributed increments, and continuous paths.
This chapter presents the constructions of Brownian motion and its asso-
ciated Itô stochastic integral, which will be used for the random modeling of
asset and portfolio prices in continuous time.
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4.1 Brownian Motion

We start by recalling the definition of Brownian motion, which is a funda-
mental example of a stochastic process. The underlying probability space
(Ω, F , P) of Brownian motion can be constructed on the space Ω = C0(R+)
of continuous real-valued functions on R+ started at 0.

Definition 4.1. The standard Brownian motion is a stochastic process
(Bt)t∈R+ such that

1. B0 = 0,

2. The sample trajectories t 7→ Bt are continuous, with probability one.

3. For any finite sequence of times t0 < t1 < · · · < tn, the increments

Bt1 −Bt0 ,Bt2 −Bt1 , . . . ,Btn −Btn−1
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are mutually independent random variables.

4. For any given times 0 ⩽ s < t, Bt − Bs has the Gaussian distribution
N (0, t− s) with mean zero and variance t− s.

In particular, for t ∈ R+, the random variable Bt ≃ N (0, t) has a Gaussian
distribution with mean zero and variance t > 0. Existence of a stochastic pro-
cess satisfying the conditions of Definition 4.1 will be covered in Section 4.2,
see also Problem 4.22.
In Figure 4.1 we draw three sample paths of a standard Brownian motion
obtained by computer simulation using (4.3). Note that there is no point
in “computing” the value of Bt as it is a random variable for all t > 0.
However, we can generate samples of Bt, which are distributed according to
the centered Gaussian distribution with variance t > 0 as in Figure 4.1.
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Fig. 4.1: Sample paths of a one-dimensional Brownian motion.

In particular, Property 4 in Definition 4.1 implies

E[Bt −Bs] = 0 and Var[Bt −Bs] = t− s, 0 ⩽ s ⩽ t,

and we have

Cov(Bs,Bt) = E[BsBt]

= E[Bs(Bt −Bs +Bs)]

= E
[
Bs(Bt −Bs) + (Bs)

2]
= E[Bs(Bt −Bs)] + E

[
(Bs)

2]
= E[Bs]E[Bt −Bs] + E

[
(Bs)

2]
= Var[Bs]
= s, 0 ⩽ s ⩽ t,

hence
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Cov(Bs,Bt) = E[BsBt] = min(s, t), s, t ⩾ 0, (4.1)

cf. also Exercise 4.1. The following graphs present two examples of possible
modeling of random data using Brownian motion.

Fig. 4.2: Evolution of the fortune of a poker player vs. number of games played.

Fig. 4.3: Web traffic ranking.

In what follows, we denote by (Ft)t∈R+ the filtration generated by the Brow-
nian paths up to time t, defined as

Ft := σ(Bs : 0 ⩽ s ⩽ t), t ⩾ 0. (4.2)

Property 3 in Definition 4.1 shows thatBt−Bs is independent of all Brownian
increments taken before time s, i.e.

(Bt −Bs) ⊥⊥ (Bt1 −Bt0 ,Bt2 −Bt1 , . . . ,Btn −Btn−1),

0 ⩽ t0 ⩽ t1 ⩽ · · · ⩽ tn ⩽ s ⩽ t, hence Bt −Bs is also independent of the
whole Brownian history up to time s, hence Bt −Bs is in fact independent
of Fs, s ⩾ 0.
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Definition 4.2. A continuous-time process (Zt)t∈R+ of integrable random
variables is a martingale under P and with respect to the filtration (Ft)t∈R+

if
E[Zt | Fs] = Zs, 0 ⩽ s ⩽ t.

Note that when (Zt)t∈R+ is a martingale, Zt is in particular Ft-measurable
at all times t ⩾ 0. As in Example 2 on page 272, we have the following result.

Proposition 4.3. Brownian motion (Bt)t∈R+ is a continuous-time martin-
gale.

Proof. We have

E[Bt | Fs] = E[Bt −Bs +Bs | Fs]
= E[Bt −Bs | Fs] + E[Bs | Fs]
= E[Bt −Bs] +Bs

= Bs, 0 ⩽ s ⩽ t,

because it has centered and independent increments, cf. Section 7.1. □

The n-dimensional Brownian motion can be constructed as
(
B

(1)
t ,B(2)

t , . . . ,B(n)
t

)
t∈R+

where
(
B

(1)
t

)
t∈R+

,
(
B

(2)
t

)
t∈R+

, . . .,
(
B

(n)
t

)
t∈R+

are independent copies of
(Bt)t∈R+ . Next, we turn to simulations of 2 dimensional and 3 dimensional
Brownian motions in Figures 4.4 and 4.5. Recall that the movement of pollen
particles originally observed by Brown (1828) was indeed 2-dimensional.
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Fig. 4.4: Two sample paths of a two-dimensional Brownian motion.
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Fig. 4.5: Sample path of a three-dimensional Brownian motion.

Figure 4.6 presents an illustration of the scaling property of Brownian motion.

Fig. 4.6: Scaling property of Brownian motion.∗

4.2 Three Constructions of Brownian Motion

We refer the reader to Chapter 1 of Revuz and Yor (1994) and to Theo-
rem 10.28 in Folland (1999) for proofs of existence of Brownian motion as a
stochastic process (Bt)t∈R+ satisfying the Conditions 1-4 of Definition 4.1.

Brownian motion as a random walk

We start with an informal description of Brownian motion as a random walk
over infinitesimal time intervals of length ∆t, whose increments
∗ The animation works in Acrobat Reader on the entire pdf file.
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∆Bt := Bt+∆t −Bt ≃ N (0, ∆t)

over the time interval [t, t+∆t] will be approximated by the Bernoulli random
variable

∆Bt = ±
√

∆t (4.3)

with equal probabilities (1/2, 1/2). According to this representation, the
paths of Brownian motion are not differentiable, although they are continuous
by Property 2, as we have

dBt
dt

≃ ±
√
dt

dt
= ± 1√

dt
≃ ±∞. (4.4)

Figure 4.7 presents a simulation of Brownian motion as a random walk with
∆t = 0.1.

Fig. 4.7: Construction of Brownian motion as a random walk with B0 = 1.∗

Note that we have
E[∆Bt] =

1
2

√
∆t− 1

2
√

∆t = 0,

and

Var[∆Bt] = E
[
(∆Bt)2] = 1

2 (+
√

∆t)2 +
1
2 (−

√
∆t)2 =

1
2 ∆t+

1
2∆t = ∆t.

In order to recover the Gaussian distribution property of the random variable
BT , we can split the time interval [0,T ] into N subintervals(

k− 1
N

T , k
N
T

]
, k = 1, 2, . . . ,N ,

of same length ∆t = T/N , with N “large”.
∗ The animation works in Acrobat Reader on the entire pdf file.
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Defining the Bernoulli random variable Xk as

Xk := ±
√
T

with equal probabilities (1/2, 1/2), we have Var(Xk) = T and

∆Bt :=
Xk√
N

= ±
√

∆t

is the increment of Bt over ((k− 1)∆t, k∆t], and we get

BT ≃
∑

0<t<T
∆Bt ≃ X1 +X2 + · · · +XN√

N
.

Hence by the central limit theorem we recover the fact that BT has the cen-
tered Gaussian distribution N (0,T ) with variance T , cf. point 4 of the above
Definition 4.1 of Brownian motion, and the illustration given in Figure 4.8.
Indeed, the central limit theorem states that given any sequence (Xk)k⩾1 of
independent identically distributed centered random variables with variance
σ2 = Var[Xk] = T , the normalized sum

X1 +X2 + · · · +XN√
N

converges (in distribution) to the centered Gaussian random variable N (0,σ2)
with variance σ2 as N goes to infinity. As a consequence, ∆Bt could in fact
be replaced by any centered random variable with variance ∆t in the above
description.

 N=1000; t <- 0:N; dt <- 1.0/N; dev.new(width=16,height=7); # Using Bernoulli samples
nsim=100;X <- matrix((dt)^0.5*(rbinom( nsim * N, 1, 0.5)-0.5)*2, nsim, N)

 X <- cbind(rep(0, nsim), t(apply(X, 1, cumsum))); H<-hist(X[,N],plot=FALSE);
layout(matrix(c(1,2), nrow =1, byrow = TRUE));par(mar=c(2,2,2,0), oma = c(2, 2, 2, 2))

 plot(t*dt, X[1, ], xlab = "", ylab = "", type = "l", ylim = c(-2, 2), col = 0,xaxs='i',las=1,
cex.axis=1.6)

for (i in 1:nsim){lines(t*dt, X[i, ], type = "l", ylim = c(-2, 2), col = i)}
 lines(t*dt,sqrt(t*dt),lty=1,col="red",lwd=3);lines(t*dt,-sqrt(t*dt), lty=1, col="red",lwd=3)

lines(t*dt,0*t, lty=1, col="black",lwd=2)
 for (i in 1:nsim){points(0.999, X[i,N], pch=1, lwd = 5, col = i)}

x <- seq(-2,2, length=100); px <- dnorm(x);par(mar = c(2,2,2,2))
 plot(NULL , xlab="", ylab="", xlim = c(0, max(px,H$density)), ylim = c(-2,2),axes=F)

rect(0, H$breaks[1:(length(H$breaks) - 1)], col=rainbow(20,start=0.08,end=0.6), H$density,
H$breaks[2:length(H$breaks)]); lines(px,x, lty=1, col="black",lwd=2)
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Fig. 4.8: Statistics of one-dimensional Brownian paths vs. Gaussian distribution.

Remark 4.4. The choice of the square root in (4.3) is in fact not fortuitous.
Indeed, any choice of ±(∆t)α with a power α > 1/2 would lead to explosion
of the process as dt tends to zero, whereas a power α ∈ (0, 1/2) would lead
to a vanishing process, as can be checked from the following code.

The following code plots a set of 72 normalized yearly return graphs of
the S&P 500 index from 1950 to 2022, together with their distribution, see
Figure 4.9, for comparison with the path properties and statistics of Brownian
motion.

 library(quantmod); getSymbols("^GSPC",from="1950-01-01",to="2022-12-31",src="yahoo")
 stock<-Cl(`GSPC`); s=0;y=0;j=0;count=0;N=240;nsim=72; X = matrix(0, nsim, N)

for (i in 1:nrow(GSPC)){if (s==0 && grepl('-01-0',index(stock[i]))) {if (count==0 || X[y,N]>0)
{y=y+1;j=1;s=1;count=count+1;}}

 if (j<=N) {X[y,j]=as.numeric(stock[i]);};if (grepl('-02-0',index(stock[i]))) {s=0;};j=j+1;}
t <- 0:(N-1); dt <- 1.0/N; m=mean(X[,N]/X[,1]-1); sigma=sd(X[,N]/X[,1]-1);

dev.new(width=16,height=7);
 layout(matrix(c(1,2), nrow =1, byrow = TRUE));par(mar=c(2,2,2,0), oma = c(2, 2, 2, 2))

plot(t*dt, X[1,]/X[1,1]-1-m*t*dt, xlab = "", ylab = "", type = "l", ylim = c(-0.5, 0.5), col = 0,
xaxs='i',las=1, cex.axis=1.6)

 for (i in 1:nsim){lines(t*dt, X[i,]/X[i,1]-1-m*t*dt, type = "l", col = i)}
lines(t*dt,sigma*sqrt(t*dt),lty=1,col="red",lwd=3);lines(t*dt,-sigma*sqrt(t*dt), lty=1,

col="red",lwd=3)
 lines(t*dt,0*t, lty=1, col="black",lwd=2)

for (i in 1:nsim){points(0.999, X[i,N]/X[i,1]-1-m*N*dt, pch=1, lwd = 5, col = i)}
 x <- seq(-0.5,0.5, length=100); px <- dnorm(x,0,sigma);

H<-hist(X[,N]/X[,1]-1-m*N*dt,plot=FALSE);
plot(NULL , xlab="", ylab="", xlim = c(0, max(px,H$density)), ylim = c(-0.5,0.5),axes=F)

 rect(0, H$breaks[1:(length(H$breaks) - 1)], col=rainbow(20,start=0.08,end=0.6), H$density,
H$breaks[2:length(H$breaks)]); lines(px,x, lty=1, col="black",lwd=2)
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Fig. 4.9: Statistics of 72 S&P 500 yearly normalized return graphs from 1950 to 2022.

Lévy’s construction of Brownian motion

Figure 4.10 represents the construction of Brownian motion by successive
linear interpolations, see Problem 4.22 for a proof of existence of Brownian
motion based on this construction.

Fig. 4.10: Lévy’s construction of Brownian motion.∗

The following code is used to generate Figure 4.10.†

∗ The animation works in Acrobat Reader on the entire pdf file.
† Download the corresponding or the that can be run
here or here.
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alpha=1/2
t <- 0:1 
dt <- 1
z=rnorm(n=1, sd = dt^alpha)
# pdf("bridge.pdf")
plot(t*dt, c(0, z), xlab = "t", ylab = "", main = "", type = "l", xaxs="i") 
k=0
z1=z
text(0.1, z1*0.9, paste("n=",k))
while (k<10)
{readline("Press <return> to continue") 
m <- (z+c(0,head(z,-1)))/2
y <- rnorm(n = length(t) - 1, sd = (dt/4)^alpha)
x <- m+y 
x <- c(matrix(c(x,z), 2, byrow = T))
n=2*length(t)-2
t <- 0:n
plot(t*dt/2, c(0, x), xlab = "t", ylab = "", main = "", type = "l", xaxs="i")
text(0.1, z1*0.9, paste("n=",k+1))
z=x
dt=dt/2
k=k+1
}
# dev.off()



{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from IPython.core.display import display, HTML\n",
    "display(HTML(\"\"\"<a href=\"https://personal.ntu.edu.sg/nprivault/indext.html\">https://personal.ntu.edu.sg/nprivault/indext.html</a>\"\"\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib notebook\n",
    "\n",
    "from pylab import *\n",
    "import time\n",
    "import numpy as np\n",
    "import random as rm\n",
    "import matplotlib \n",
    "import matplotlib.pyplot as plt \n",
    "    \n",
    "def path(axarr):\n",
    "    global alpha,z,t,dt\n",
    "    z1=z;    \n",
    "    z=z[:-1]\n",
    "    z=np.append([0],z)\n",
    "    m = (np.add(z1, z)).tolist()\n",
    "    m = 0.5*np.array(m)\n",
    "    y = np.random.normal(0, pow(dt/4,alpha), len(t) - 1)\n",
    "    x = (np.add(m, y)).tolist() \n",
    "    x = np.insert(z1, np.arange(len(x)), x)\n",
    "    t = list(range(2*len(t)-1))\n",
    "    tt = 0.5*dt*np.array(t)\n",
    "    axarr.clear()\n",
    "    axarr.plot(tt,np.append([0],x))\n",
    "    n=2*len(t)-2\n",
    "    plt.text(0.1,x[0],'n=%d' % n)\n",
    "    z=x\n",
    "    dt=dt/2\n",
    "    ff.canvas.draw()\n",
    "\n",
    "ff, axarr = plt.subplots(1,figsize=(12,7))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "alpha=0.5\n",
    "t = [0,1]\n",
    "dt = 1\n",
    "z=[np.random.normal(0, pow(dt,alpha))]\n",
    "axarr.clear()\n",
    "axarr.plot(t*dt,[0]+z)\n",
    "ff.canvas.draw()\n",
    "time.sleep(1)\n",
    "\n",
    "for f in range(10):\n",
    "    path(axarr)\n",
    "    time.sleep(1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "path(axarr)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.4"
  },
  "widgets": {
   "state": {},
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}


https://jupyter.org/try
https://research.google.com/colaboratory/
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 dev.new(width=16,height=7); alpha=1/2;t <- 0:1;dt <- 1; z=rnorm(1,mean=0,sd=dt^alpha)
plot(t*dt,c(0,z),xlab = "t",ylab = "",col = "blue",main = "",type = "l", xaxs="i", las = 1)

 k=0;while (k<12) {readline("Press <return> to continue")
k=k+1;m <- (z+c(0,head(z,-1)))/2;y <- rnorm(length(t)-1,mean=0,sd=(dt/4)^alpha)

 x <- m+y;x <- c(matrix(c(x,z), 2, byrow = T));n=2*length(t)-2;t <- 0:n
plot(t*dt/2, c(0, x), xlab = "t", ylab = "", col = "blue", main = "", type = "l", xaxs="i", las =

1);z=x;dt=dt/2}

Construction by series expansions

Brownian motion on [0,T ] can also be constructed by Fourier synthesis via
the Paley-Wiener series expansion

Bt =
∑
n⩾1

Xnfn(t) =

√
2T
π

∑
n⩾1

Xn
sin((n− 1/2)πt/T )

n− 1/2 , 0 ⩽ t ⩽ T ,

where (Xn)n⩾1 is a sequence of independent N (0, 1) standard Gaussian ran-
dom variables, as illustrated in Figure 4.11.∗

Fig. 4.11: Construction of Brownian motion by series expansions.†

4.3 Wiener Stochastic Integral

In this section, we construct the Wiener stochastic integral of square-
integrable deterministic functions of time with respect to Brownian motion.

Recall that the price St of risky assets was originally modeled in Bachelier
(1900) as St := σBt, where σ is a volatility parameter. The stochastic integral

∗ Download the corresponding that can be run here or here.
† The animation works in Acrobat Reader on the entire pdf file.
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{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from IPython.core.display import display, HTML\n",
    "display(HTML(\"\"\"<a href=\"https://personal.ntu.edu.sg/nprivault/indext.html\">https://personal.ntu.edu.sg/nprivault/indext.html</a>\"\"\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "%matplotlib notebook\n",
    "\n",
    "from pylab import *\n",
    "import time\n",
    "import numpy as np\n",
    "import random as rm\n",
    "import matplotlib \n",
    "import matplotlib.pyplot as plt \n",
    "    \n",
    "N=1000\n",
    "\n",
    "def series(axarr):\n",
    "    global alpha,z,T,t,n,N\n",
    "    y=[0]*N\n",
    "    t = list(range(N));\n",
    "    x=np.random.normal(0,1)\n",
    "    for j in range(N):\n",
    "        y[j]=sigma*sqrt(2*T)*sin((n-0.5)*pi*j*dt/T)/pi\n",
    "    axarr.clear()\n",
    "    z=np.array(z)+x*np.array(y)/(n-0.5)\n",
    "    axarr.plot(t,np.array(y)/5)\n",
    "    axarr.plot(t,x*np.array(y)/(n-0.5))\n",
    "    axarr.plot(t,z,color='b')\n",
    "    plt.text(5,z[0]-3,'n=%d' % n)\n",
    "    plt.margins(x=0)\n",
    "    ff.canvas.draw()\n",
    "    n=n+1\n",
    "\n",
    "ff, axarr = plt.subplots(1,figsize=(12,7))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "T=100.0\n",
    "sigma=1.0\n",
    "dt=0.1\n",
    "t = [dt]*N\n",
    "z = [0]*N\n",
    "n=1\n",
    "axarr.plot(t,z)\n",
    "ff.canvas.draw()\n",
    "plt.margins(x=0)\n",
    "\n",
    "for f in range(500):\n",
    "    series(axarr)\n",
    "    time.sleep(4/n)\n",
    "pdf.close()"
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.4"
  },
  "widgets": {
   "state": {},
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}
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w T
0
f(t)dSt = σ

w T
0
f(t)dBt

can be used to represent the value of a portfolio as a sum of profits and
losses f(t)dSt where dSt represents the stock price variation and f(t) is the
quantity invested in the asset St over the short time interval [t, t+ dt].

A naive definition of the stochastic integral with respect to Brownian mo-
tion would consist in letting

w T
0
f(t)dBt :=

w T
0
f(t)

dBt
dt

dt,

and evaluating the above integral with respect to dt. However, this definition
fails because the paths of Brownian motion are not differentiable, cf. (4.4).
Next we present Itô’s construction of the stochastic integral with respect to
Brownian motion. Stochastic integrals will be first constructed as integrals
of simple step functions of the form

f(t) =
n∑
i=1

ai1(ti−1,ti](t), 0 ⩽ t ⩽ T , (4.5)

i.e. the function f takes the value ai on the interval (ti−1, ti], i = 1, 2, . . . ,n,
with 0 ⩽ t0 < · · · < tn ⩽ T , as illustrated in Figure 4.12.

f(t)

t0

a1

t1

a2

t2 t3 t4

a4

t

Fig. 4.12: Step function t 7→ f(t).

 ti<-c(0,2,4.5,7,9)
 ai<-c(0,3,1,2,1,0)

plot(stepfun(ti,ai),xlim = c(0,10),do.points = F,main="", col = "blue")

Recall that the classical integral of f given in (4.5) is interpreted as the area
under the curve represented by f , and computed as

w T
0
f(t)dt =

n∑
i=1

ai(ti − ti−1).
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6
f(t)

-

b
t0

a1

br
t1

a2 rb
t2

rb r
t3 t4

a4

t

Fig. 4.13: Area under the step function t 7→ f(t).

In Definition 4.5 we use such step functions for the construction of the
stochastic integral with respect to Brownian motion. The stochastic inte-
gral (4.6) for step functions will be interpreted as the sum of profits and
losses ai(Bti −Bti−1), i = 1, 2, . . . ,n, in a portfolio holding a quantity ai of
a risky asset whose price variation is Bti −Bti−1 at time i = 1, 2, . . . ,n.

Definition 4.5. The stochastic integral with respect to Brownian motion
(Bt)t∈[0,T ] of the simple step function f of the form (4.5) is defined by

w T
0
f(t)dBt :=

n∑
i=1

ai(Bti −Bti−1). (4.6)

In what follows, we will make a repeated use of the space L2([0,T ]) of square-
integrable functions.

Definition 4.6. Let L2([0,T ]) denote the space of (measurable) functions
f : [0,T ] −→ R such that

∥f∥L2([0,T ]) :=

√w T
0

|f(t)|2dt < ∞, f ∈ L2([0,T ]). (4.7)

In the above definition, ∥f∥L2([0,T ]) represents the norm of the function f ∈
L2([0,T ]).

For example, the function f(t) := tα, t ∈ (0,T ], belongs to L2([0,T ]) if
and only if α > −1/2, as we have

w T
0
f2(t)dt =

w T
0
t2αdt =


+∞ if α ⩽ −1/2,

[
t1+2α

1 + 2α

]t=T
t=0

=
T 1+2α

1 + 2α < ∞ if α > −1/2,

see Figure 4.14 for an illustration.
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(a) Infinite area, α = −1 < −1/2.
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(b) Finite area, α = −1/4 > −1/2.

Fig. 4.14: Infinite vs. finite area under the curve t 7→ t2α.

In Lemma 4.7 we determine the probability distribution of
w T

0
f(t)dBt and

we show that it is independent of the particular representation (4.5) chosen
for f(t).

Lemma 4.7. Let f be a simple step function f of the form (4.5). The stochas-
tic integral

w T
0
f(t)dBt defined in (4.6) has the centered Gaussian distribution

w T
0
f(t)dBt ≃ N

(
0,
w T

0
|f(t)|2dt

)
with mean E

[ w T
0
f(t)dBt

]
= 0 and variance given by the Itô isometry

Var
[ w T

0
f(t)dBt

]
= E

[( w T
0
f(t)dBt

)2]
=

w T
0

|f(t)|2dt. (4.8)

Proof. Recall that if X1,X2, . . . ,Xn are independent Gaussian random vari-
ables with probability distributions N (m1,σ2

1),. . .,N (mn,σ2
n), then the sum

X1 + · · · +Xn is a Gaussian random variable with distribution

N
(
m1 + · · · +mn,σ2

1 + · · · + σ2
n

)
.

As a consequence, the stochastic integral

w T
0
f(t)dBt =

n∑
k=1

ak(Btk −Btk−1)

of the step function

f(t) =
n∑
k=1

ak1(tk−1,tk ](t), 0 ⩽ t ⩽ T ,

has the centered Gaussian distribution with mean 0 and variance

" 161

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

Var
[ w T

0
f(t)dBt

]
= Var

[
n∑
k=1

ak(Btk −Btk−1)

]

=
n∑
k=1

Var[ak(Btk −Btk−1)]

=
n∑
k=1

|ak|2 Var[Btk −Btk−1 ]

=
n∑
k=1

(tk − tk−1)|ak|2

=
n∑
k=1

|ak|2
w tk
tk−1

dt

=
n∑
k=1

|ak|2
w T

0
1(tk−1,tk ](t)dt

=
w T

0

n∑
k=1

|ak|21(tk−1,tk ](t)dt

=
w T

0
|f(t)|2dt,

since the simple function

f2(t) =
n∑
i=1

a2
i1(ti−1,ti](t), 0 ⩽ t ⩽ T ,

takes the value a2
i on the interval (ti−1, ti], i = 1, 2, . . . ,n, as can be checked

from the following Figure 4.15.

6
f2

-

b
t0

a21
rb

t1

a22 br

t2

br r
t3 t4

a24

t

Fig. 4.15: Squared step function t 7→ f2(t).

□

The norm ∥ · ∥L2([0,T ]) on L2([0,T ]) induces a distance between any two
functions f and g in L2([0,T ]), defined as
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∥f − g∥L2([0,T ]) :=

√w T
0

|f(t) − g(t)|2dt < ∞,

cf. e.g. Chapter 3 of Rudin (1974) for details.

Definition 4.8. Convergence in L2([0,T ]). We say that a sequence (fn)n⩾0
of functions in L2([0,T ]) converges in L2([0,T ]) to another function f ∈
L2([0,T ]) if

lim
n→∞

∥f − fn∥L2([0,T ]) = lim
n→∞

√w T
0

|f(t) − fn(t)|2dt = 0.

 dev.new(width=16,height=7)
f = function(x){exp(sin(x*1.8*pi))}

 for (i in 3:9){n=2^i;x<-cumsum(c(0,rep(1,n)))/n;
z<-c(NA,head(x,-1))

 y<-c(f(x)-pmax(f(x)-f(z),0),f(1))
t=seq(0,1,0.01);

 plot(f,from=0,to=1,ylim=c(0.3,2.9),type="l",lwd=3,col="red",main="",xaxs="i",yaxs="i",
las=1)

lines(stepfun(x,y),do.points=F,lwd=2,col="blue",main="");
 readline("Press <return> to continue");}

Fig. 4.16: Step function approximation.∗

By e.g. Theorem 3.13 in Rudin (1974) or Proposition 2.4 page 63 of Hirsch
and Lacombe (1999), we have the following result which states that the set
of simple step functions f of the form (4.5) is a linear space which is dense
in L2([0,T ]) for the norm (4.7), as stated in the next proposition.

Proposition 4.9. For any function f ∈ L2([0,T ]) satisfying (4.7), there ex-
ists a sequence (fn)n⩾0 of simple step functions of the form (4.5), converging
to f in L2([0,T ]) in the sense that

∗ The animation works in Acrobat Reader on the entire pdf file.
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lim
n→∞

∥f − fn∥L2([0,T ]) = lim
n→∞

√w T
0

|f(t) − fn(t)|2dt = 0.

In order to extend the definition (4.6) of the stochastic integral
w T

0
f(t)dBt

to any function f ∈ L2([0,T ]), i.e. to f : [0,T ] −→ R measurable such that
w T

0
|f(t)|2dt < ∞, (4.9)

we will make use of the space L2(Ω) of square-integrable random variables.

Definition 4.10. Let L2(Ω) denote the space of random variables F : Ω −→
R such that

∥F∥L2(Ω) :=
√

E
[
F 2] < ∞.

The norm ∥ · ∥L2(Ω) on L2(Ω) induces the distance

∥F −G∥L2(Ω) :=
√

E
[
(F −G)2] < ∞,

between the square-integrable random variables F and G in L2(Ω).

Definition 4.11. Convergence in L2(Ω). We say that a sequence (Fn)n⩾0 of
random variables in L2(Ω) converges in L2(Ω) to another random variable
F ∈ L2(Ω) if

lim
n→∞

∥F − Fn∥L2(Ω) = lim
n→∞

√
E
[
(F − Fn)2] = 0.

The next proposition allows us to extend Lemma 4.7 from simple step func-
tions to square-integrable functions in L2([0,T ]).

Proposition 4.12. The definition (4.6) of the stochastic integral
w T

0
f(t)dBt

can be extended to any function f ∈ L2([0,T ]). In this case,
w T

0
f(t)dBt has

the centered Gaussian distribution
w T

0
f(t)dBt ≃ N

(
0,
w T

0
|f(t)|2dt

)

with mean E

[w T
0
f(t)dBt

]
= 0 and variance given by the Itô isometry

Var
[w T

0
f(t)dBt

]
= E

[(w T
0
f(t)dBt

)2
]
=

w T
0

|f(t)|2dt. (4.10)
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Proof. The extension of the stochastic integral to all functions satisfying
(4.9) is obtained by a denseness and Cauchy∗ sequence argument, based on
the isometry relation (4.10).

i) Given f a function satisfying (4.9), consider a sequence (fn)n⩾0 of simple
functions converging to f in L2([0,T ]), i.e.

lim
n→∞

∥f − fn∥L2([0,T ]) = lim
n→∞

√w T
0

|f(t) − fn(t)|2dt = 0

as in Proposition 4.9.
ii) By the isometry relation (4.8) or (4.10) and the triangle inequality† we

have ∥∥∥∥w T0 fk(t)dBt −
w T

0
fn(t)dBt

∥∥∥∥
L2(Ω)

=

√√√√E

[(w T
0
fk(t)dBt −

w T
0
fn(t)dBt

)2
]

=

√√√√E

[(w T
0
(fk(t) − fn(t))dBt

)2
]

=

√w T
0

|fk(t) − fn(t)|2dt

= ∥fk − fn∥L2([0,T ])

⩽ ∥fk − f∥L2([0,T ]) + ∥f − fn∥L2([0,T ]),

which tends to 0 as k and n tend to infinity, hence
(r T

0 fn(t)dBt
)
n⩾0

is a Cauchy sequence in L2(Ω) for the L2(Ω)-norm.
iii) Since the sequence

(r T
0 fn(t)dBt

)
n⩾0

is Cauchy and the space L2(Ω) is
complete, cf. e.g. Theorem 3.11 in Rudin (1974) or Chapter 4 of Dudley

(2002), we conclude that
(w T

0
fn(t)dBt

)
n⩾0

converges for the L2-norm

to a limit in L2(Ω). In this case we let
w T

0
f(t)dBt := lim

n→∞

w T
0
fn(t)dBt,

which also satisfies (4.10) from (4.8). From (4.10) we can check that the
limit is independent of the approximating sequence (fn)n⩾0.

∗ See MH3100 Real Analysis I.
† The triangle inequality ∥fk − fn∥L2([0,T ]) ⩽ ∥fk − f∥L2([0,T ]) + ∥f − fn∥L2([0,T ])
follows from the Minkowski inequality.
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iv) Finally, from the convergence of Gaussian characteristic functions and a
dominated convergence argument, we have

E

[
exp

(
iα

w T
0
f(t)dBt

)]
= E

[
lim
n→∞

exp
(
iα

w T
0
fn(t)dBt

)]
= lim

n→∞
E

[
exp

(
iα

w T
0
fn(t)dBt

)]
= lim

n→∞
exp

(
−α2

2
w T

0
|fn(t)|2dt

)
= exp

(
−α2

2
w T

0
|f(t)|2dt

)
,

f ∈ L2([0,T ]), α ∈ R, we check that
w T

0
f(t)dBt has the centered Gaus-

sian distribution
w T

0
f(t)dBt ≃ N

(
0,
w T

0
|f(t)|2dt

)
,

see Theorem A.13.

□

The next corollary is obtained by bilinearity from the Itô isometry (4.10).
Corollary 4.13. The stochastic integral with respect to Brownian motion
(Bt)t∈R+ satisfies the isometry

E

[w T
0
f(t)dBt

w T
0
g(t)dBt

]
=

w T
0
f(t)g(t)dt,

for all square-integrable deterministic functions f , g ∈ L2([0,T ]).
Proof. Applying the Itô isometry (4.10) to the processes f + g and f − g and
the relation xy = (x+ y)2/4 − (x− y)2/4, we have

E

[w T
0
f(t)dBt

w T
0
g(t)dBt

]
=

1
4E

[(w T
0
f(t)dBt +

w T
0
g(t)dBt

)2
−
(w T

0
f(t)dBt −

w T
0
g(t)dBt

)2
]

=
1
4E

[(w T
0
(f(t) + g(t))dBt

)2
]

− 1
4E

[(w T
0
(f(t) − g(t))dBt

)2
]

=
1
4
w T

0
(f(t) + g(t))2dt− 1

4
w T

0
(f(t) − g(t))2dt

=
1
4
w T

0

(
(f(t) + g(t))2 − (f(t) − g(t))2)dt
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=
w T

0
f(t)g(t)dt.

□

For example, the Wiener stochastic integral
w T

0
e−tdBt is a random variable

having centered Gaussian distribution with variance

E

[(w T
0

e−tdBt

)2
]
=

w T
0

e−2tdt

=

[
−1

2 e−2t
]t=T
t=0

=
1
2
(
1 − e−2T ),

as follows from the Itô isometry (4.8).

Remark 4.14. The Wiener stochastic integral
w T

0
f(s)dBs is a Gaussian

random variable that cannot be “computed” in the way standard integrals
are computed via the use of primitives. However, when f ∈ L2([0,T ]) is in
C1([0,T ]),∗ we have the integration by parts relation

w T
0
f(t)dBt = f(T )BT −

w T
0
Btdf(t) = f(T )BT −

w T
0
Btf

′(t)dt. (4.11)

When f ∈ L2(R+) is in C1(R+) we also have following formula
w ∞

0
f(t)dBt = −

w ∞

0
Btf

′(t)dt, (4.12)

provided that limt→∞ t|f(t)|2 = 0 and f ∈ L2(R+), cf. e.g. Exercise 4.5 and
Remark 2.5.9 in Privault (2009).

For example, applying Relation (4.11) to the function f(t) = t shows that
w T

0
tdBt = TBT −

w T
0
Btdt = T

w T
0
dBt −

w T
0
Btdt,

hence w T
0
(T − t)dBt =

w T
0
Btdt.

∗ This means that the function f is continuously differentiable on [0, T ].
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4.4 Itô Stochastic Integral

In this section we extend the Wiener stochastic integral from deterministic
functions in L2([0,T ]) to random square-integrable (random) adapted pro-
cesses. For this, we will need the notion of measurability.

The extension of the stochastic integral to adapted random processes is
actually necessary in order to compute a portfolio value when the portfolio
process is no longer deterministic. This happens in particular when one needs
to update the portfolio allocation based on random events occurring on the
market.

A random variable F is said to be Ft-measurable if the knowledge of F
depends only on the information known up to time t. As an example, if
t =today,
• the date of the past course exam is Ft-measurable, because it belongs to

the past.

• the date of the upcoming course exam, although it refers to a future event,
is also Ft-measurable because it is known at time t.

• the date of the next typhoon is not Ft-measurable since it is not known
at time t.

• the maturity date T of the European option is Ft-measurable for all
t ∈ [0,T ], because it has been determined at time 0.

• the exercise date τ of an American option after time t (see Section 15.1)
is not Ft-measurable because it refers to a future random event.

In Definition 4.15, (Ft)t∈[0,T ] denotes the information flow defined in (4.2),
i.e.

Ft := σ(Bs : 0 ⩽ s ⩽ t), t ⩾ 0.

Definition 4.15. A stochastic process (Xt)t∈[0,T ] is said to be (Ft)t∈[0,T ]-
adapted if Xt is Ft-measurable for all t ∈ [0,T ].
For example,

- (Bt)t∈R+ is an (Ft)t∈R+ -adapted process,
- (Bt+1)t∈R+ is not an (Ft)t∈R+ -adapted process,
- (Bt/2)t∈R+ is an (Ft)t∈R+ -adapted process,

-
(
B√

t

)
t∈[0,1] is not an (Ft)t∈[0,1]-adapted process,

-
(
B√

t

)
t∈[1,∞)

is an (Ft)t∈[1,∞)-adapted process,
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-
(

Maxs∈[0,t]Bs)t∈R+ is an (Ft)t∈R+ -adapted process,

-
(w t

0
Bsds

)
t∈R+

is an (Ft)t∈R+ -adapted process,

-
(w t

0
f(s)dBs

)
t∈[0,T ]

is an (Ft)t∈[0,T ]-adapted process when f ∈ L2([0,T ]).

In other words, a stochastic process (Xt)t∈R+ is (Ft)t∈[0,T ]-adapted if the
value of Xt at time t depends only on information known up to time t. Note
that the value of Xt may still depend on “known” future data, for example
a fixed future date in the calendar, such as a maturity time T > t, as long as
its value is known at time t.

The next Figure 4.17 shows an adapted portfolio strategy on two assets,
constructed from a sign-switching signal based on spread data, see § 2.5 in
Privault (2021a) and this .
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Fig. 4.17: Adapted pair trading portfolio strategy.

The stochastic integral of adapted processes is first constructed as integrals
of simple predictable processes.

Definition 4.16. A simple predictable processes is a stochastic process
(ut)t∈R+ of the form

ut :=
n∑
i=1

Fi1(ti−1,ti](t), t ⩾ 0, (4.13)

where Fi is an Fti−1-measurable random variable for i = 1, 2, . . . ,n, and
0 = t0 < t1 < · · · < tn−1 < tn = T .

The notion of simple predictable process makes full sense in the context
of portfolio investment, in which Fi will represent an investment allocation
decided at time ti−1 and to remain unchanged over the time interval (ti−1, ti].
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# install.packages("quantmod")
# install.packages("tseries")
# install.packages("ggplot2")
# install.packages("gridExtra") 
# install.packages("directlabels")

library(quantmod)
library(tseries)
library(ggplot2)
library(gridExtra) 
library(directlabels)

graphics.off()

cat('Examples of pairs: 005930.KS vs MSFT, 2600.HK vs 1919.HK\n')
# KO / PEP
# AMZN / MSFT

stock1<-readline(prompt = "Enter Stock 1 (default: GOOG or try 1800.HK):");
if (stock1=="") {stock1<-"GOOG"}
stock2<-readline(prompt = "Enter Stock 2 (default: AAPL or try 1919.HK):");
if (stock2=="") {stock2<-"AAPL"}
symbols = c(stock1,stock2)
today <- as.Date(Sys.Date(), format="%Y-%m-%d")
startdate=today-365 # as.Date("2020-01-01")
getSymbols(symbols, from=startdate, to=today,src="yahoo")
ClosePrices <- lapply(symbols, function(x) Ad(get(x)))
stock<-do.call(merge, ClosePrices)
stock.price<-stock[rowSums(is.na(stock[,1:2])) == 0,]
price.pair <- stock.price[,1:2]["::"]

chartSeries(stock.price[,1],up.col="purple",theme="white",name = symbols[1])
readline(prompt = "1. Press <Enter> for second graph.")

dev.new()
chartSeries(stock.price[,2],up.col="blue", theme="white",name = symbols[2])
readline(prompt = "2. Press <Enter> for comparison graphs.")

graphics.off()

myTheme <- chart_theme()
myTheme$rylab <- FALSE
myTheme$col$line.col <- "purple"
par(mfrow=c(1,3))
plot(chart_Series(stock.price[,1], theme=myTheme,name = symbols[1]))
myTheme$col$line.col <- "blue"
plot(chart_Series(stock.price[,2], theme=myTheme,name = symbols[2]))
plot(add_TA(stock.price[,1], col='purple', lw =2, on = 1))

readline(prompt = "3. Press <Enter> for linear regression.")

# Linear Regression
# MH3510 Regression Analysis

reg <- lm(log(price.pair[,2]) ~ log(price.pair[,1]))
hedge.ratio <- as.numeric(reg$coef[2])
premium <- as.numeric(reg$coef[1])

dev.new()
myTheme <- chart_theme()
myTheme$col$line.col <- "blue"
plot(chart_Series(price.pair[,2],name="",theme=myTheme))
plot(add_TA(exp(premium+hedge.ratio*log(price.pair[,1])),col='purple', lw =2,on = 1))

readline(prompt = "4. Press <Enter> for spread display.")

spread <- log(price.pair[,2]) - ( hedge.ratio * log(price.pair[,1]) + premium )
dev.new()
plot(plot(spread,col='blue', main = "Spread"))

print(adf.test(spread))

readline(prompt = "5. Press <Enter> for signal display.")

threshold<-readline(prompt = "Enter threshold value (default: 0.02):");
if (threshold=="") {threshold<-0.02}
signal<-spread;
signal[1] = sign(as.numeric(spread[1])); i=1; threshold=-as.numeric(signal[1])*threshold
while (i<length(spread)){i=i+1;
while (i<length(spread) && sign(as.numeric(spread[i+1])-threshold)==sign(as.numeric(spread[i])-threshold)) {signal[i]=sign(as.numeric(spread[i-1])-threshold);i=i+1;}
signal[i]=sign(as.numeric(spread[i-1])-threshold);threshold=-threshold;}
signal[i]=sign(as.numeric(spread[i-1])-threshold);threshold <- abs(threshold)
ratio1=range(spread)[1]/threshold;ratio2=range(spread)[2]/threshold
tblue <- rgb(0, 0, 1, alpha=0.8);tred <- rgb(1, 0, 0, alpha=0.5)
dev.new(width=16,height=7)
barplot(spread,col = tblue, lwd = 3, main = "",cex.axis=1.4,cex=1.6,las=1);par(new=TRUE);
barplot(-signal,offset=(range(spread)[1]+range(spread)[2])/threshold,ylim=c(ratio2,ratio1), xpd = FALSE, col=tred,space = 0, border ="blue",xaxt="n",yaxt="n",xlab="",ylab="")

readline(prompt = "6. Press <Enter> for backtesting returns.")

pricepair1norm = data.frame(exp(premium+hedge.ratio*log(price.pair[,1])))
pricepair2 = data.frame(price.pair[,2])
pricepair1norm$date = as.Date(rownames(pricepair2))
pricepair2$date = as.Date(rownames(pricepair2))
colnames(pricepair1norm)[1] = 'Prices'
colnames(pricepair2)[1] = 'Prices'

plot1<-ggplot(data=pricepair1norm, aes(x=date, y=Prices)) + geom_line(color='purple') + geom_line(data=pricepair2, aes(x=date, y=Prices),color='blue') + theme_bw() + xlab(NULL) + annotate(geom="text", x = as.Date(today, "%Y-%m-%d"), y=as.numeric(last(pricepair1norm$Prices)), label=stock1,color="purple") + annotate(geom="text", x = as.Date(today, "%Y-%m-%d"), y=as.numeric(last(pricepair2$Prices)), label=stock2,color="blue") 

Spread = data.frame(spread)
Spread$date = as.Date(rownames(Spread))
colnames(Spread)[1] = 'Spread'

signal2<-signal
for (i in 1:length(spread)) {signal2[i]=-threshold*signal[i]}
signal2 = data.frame(signal2)
signal2$date = as.Date(rownames(signal2))
colnames(signal2)[1] = 'signal2'
plot2<-ggplot(data=Spread, aes(x=date, y=Spread)) + geom_line(color='blue') + geom_area(data=signal2, aes(x=date, y=-signal2),fill='red',color='red',alpha=0.2) + theme_bw() + xlab(NULL)

return.pairtrading=(lag(signal)*(price.pair[,2]-lag(price.pair[,2]))-lag(signal)*hedge.ratio*(price.pair[,1]-lag(price.pair[,1])))/(hedge.ratio*lag(price.pair[,1])+lag(price.pair[,2]))
return.pairtrading<-return.pairtrading[2:length(return.pairtrading)]

hedge.ratio=price.pair[,1]/price.pair[,2]
diff.xi1=diff(signal)[-1]/(1+hedge.ratio)/2
diff.xi2=-diff(signal)[-1]*hedge.ratio/(1+hedge.ratio)/2
xi1=cumsum(c(signal[1]/(1+hedge.ratio[1]),diff.xi1))
xi2=cumsum(c(-signal[1]*hedge.ratio[1]/(1+hedge.ratio[1]),diff.xi2))
portfolio=xi1*price.pair[,1]+xi2*price.pair[,2]
benchmark=as.numeric(xi1[1])*price.pair[,1]+as.numeric(xi2[1])*price.pair[,2]

Performance = data.frame(portfolio)
Performance$date = as.Date(rownames(Performance))
colnames(Performance)[1] = 'Performance'
Benchmark = data.frame(benchmark)
Benchmark$date = as.Date(rownames(Benchmark))
colnames(Benchmark)[1] = 'Benchmark'

Xi1f = data.frame(xi1)
Xi1f$date = as.Date(rownames(Xi1f))
colnames(Xi1f)[1] = 'Xi1'
Xi2f = data.frame(xi2)
Xi2f$date = as.Date(rownames(Xi2f))
colnames(Xi2f)[1] = 'Xi2'

plot3 <- ggplot(data=Performance, aes(x=date, y=Performance)) + geom_line(color='red',linewidth=1) + geom_line(data=Xi1f, aes(x=date, y=Xi1),color='purple') + geom_line(data=Xi2f, aes(x=date, y=Xi2),color='blue')  + geom_line(data=Benchmark, aes(x=date, y=Benchmark),color='orange') + annotate(geom="text", x = as.Date(startdate+20, "%Y-%m-%d"), y=as.numeric(last(Performance$Performance)), label="Pair trading",color="red") + annotate(geom="text", x = as.Date(startdate+80, "%Y-%m-%d"), y=as.numeric(last(Performance$Performance)), label="Xi1",color="purple") + annotate(geom="text", x = as.Date(startdate+120, "%Y-%m-%d"), y=as.numeric(last(Performance$Performance)), label="Xi2",color="blue") + annotate(geom="text", x = as.Date(startdate+180, "%Y-%m-%d"), y=as.numeric(last(Performance$Performance)), label="Benchmark",color="orange") + theme_bw() + xlab(NULL) 

dev.new(width=16,height=7)
grid.arrange(plot1, plot2, plot3, ncol=3)

# pdf("pairtradingGOOG_AAPL.pdf",width=16,height=6)
# grid.arrange(plot2, plot3, ncol=2)


https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

By convention, u : Ω × R+ −→ R is denoted in what follows by ut(ω),
t ∈ R+, ω ∈ Ω, and the random outcome ω is often dropped for convenience
of notation.

Definition 4.17. The stochastic integral with respect to Brownian motion
(Bt)t∈R+ of any simple predictable process (ut)t∈R+ of the form (4.13) is
defined by

w T
0
utdBt :=

n∑
i=1

(Bti −Bti−1)Fi, (4.14)

with 0 = t0 < t1 < · · · < tn−1 < tn = T .

The use of predictability in the definition (4.14) is essential from a financial
point of view, as Fi will represent a portfolio allocation made at time ti−1 and
kept constant over the trading interval [ti−1, ti], while Bti −Bti−1 represents
a change in the underlying asset price over [ti−1, ti]. See also the related
discussion on self-financing portfolios in Section 5.3 and Lemma 5.14 on the
use of stochastic integrals to represent the value of a portfolio.

Definition 4.18. Let L2(Ω × [0,T ]) denote the space of stochastic processes

u : Ω × [0,T ]−→ R

(ω, t) 7−→ ut(ω)

such that

∥u∥L2(Ω×[0,T ]) :=

√
E

[w T
0

|ut|2dt
]
< ∞, u ∈ L2(Ω × [0,T ]).

The norm ∥ · ∥L2(Ω×[0,T ]) on L2(Ω × [0,T ]) induces a distance between two
stochastic processes u and v in L2(Ω × [0,T ]), defined as

∥u− v∥L2(Ω×[0,T ]) =

√
E

[w T
0

|ut − vt|2dt
]
.

Definition 4.19. Convergence in L2(Ω × [0,T ]). We say that a sequence(
u(n)

)
n⩾0 of processes in L2(Ω × [0,T ]) converges in L2(Ω × [0,T ]) to an-

other process u ∈ L2(Ω × [0,T ]) if

lim
n→∞

∥∥u− u(n)
∥∥
L2(Ω×[0,T ]) = lim

n→∞

√
E

[w T
0

∣∣ut − u
(n)
t

∣∣2dt] = 0.

By Lemma 1.1 of Ikeda and Watanabe (1989), pages 22 and 46, or Propo-
sition 2.5.3 in Privault (2009), the set of simple predictable processes forms
a linear space which is dense in the subspace L2

ad(Ω × R+) made of square-
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integrable adapted processes in L2(Ω × R+), as stated in the next proposi-
tion.

Proposition 4.20. Given u ∈ L2
ad(Ω × R+) a square-integrable adapted

process there exists a sequence (u(n))n⩾0 of simple predictable processes con-
verging to u in L2(Ω × R+), i.e.

lim
n→∞

∥∥u− u(n)
∥∥
L2(Ω×[0,T ]) = lim

n→∞

√
E

[w T
0

∣∣ut − u
(n)
t

∣∣2dt] = 0.

For example, a natural approximation of (Bt)t∈R+ by a simple predictable
process can be constructed as

ut =
n∑
i=1

Fi1(ti−1,ti](t) :=
n∑
i=1

Bti−11(ti−1,ti](t), t ⩾ 0, (4.15)

where Fi := Bti−1 is Fti−1-measurable for i = 1, 2, . . . ,n, as in Figure 4.18.

 N=10000; t <- 0:(N-1); dt <- 1.0/N;
dB <- rnorm(N,mean=0,sd=sqrt(dt));X <- rep(0,N);X[1]=0

 for (j in 2:N){X[j]=X[j-1]+dB[j]}; for (j in 1:10) {m=2**j;
plot(t/(N-1), X, xlab = "t", ylab = "", type = "l", ylim = c(1.05*min(X),1.05*max(X)),

xaxs="i", yaxs="i", col = "blue", las = 1, cex.axis=1.6, cex.lab=1.8)
 abline(h=0); t1=seq(1.0/m,1,1.0/m); Bt=c(0)

for (i in 1:m) {Bt=c(Bt,X[t1[i]*N])}
 lines(stepfun(t1,Bt),xlim =c(0,T),xlab="t",ylab=expression('N'[t]),pch=1, cex=0.8, col='black',

lwd=2, main=""); Sys.sleep(1)}

Fig. 4.18: Step function approximation of Brownian motion.∗

The next Proposition 4.21 extends the construction of the stochastic integral
from simple predictable processes to square-integrable (Ft)t∈[0,T ]-adapted
processes (ut)t∈R+ for which the value of ut at time t can only depend on
information contained in the Brownian path up to time t.
∗ The animation works in Acrobat Reader on the entire pdf file.
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This restriction means that the Itô integrand ut cannot depend on future
information, for example a portfolio strategy that would allow the trader to
“buy at the lowest” and “sell at the highest” is excluded as it would require
knowledge of future market data. Note that the difference between Rela-
tion (4.16) below and Relation (4.10) is the presence of an expectation on
the right-hand side.

Proposition 4.21. The stochastic integral with respect to Brownian motion
(Bt)t∈R+ extends to all adapted processes (ut)t∈R+ such that

∥u∥2
L2(Ω×[0,T ]) := E

[w T
0

|ut|2dt
]
< ∞,

with the Itô isometry

Var
[w T

0
utdBt

]
= E

[(w T
0
utdBt

)2
]
=

∥∥∥∥w T0 utdBt

∥∥∥∥2

L2(Ω)

= E

[w T
0

|ut|2dt
]

.

(4.16)
In addition, the Itô integral of an adapted process (ut)t∈R+ is always a cen-
tered random variable:

E

[w T
0
utdBt

]
= 0. (4.17)

Proof. We start by showing that the Itô isometry (4.16) holds for the simple
predictable process u of the form (4.13). We have

E

[(w T
0
utdBt

)2
]
= E

( n∑
i=1

(Bti −Bti−1)Fi

)2


= E

( n∑
i=1

(Bti −Bti−1)Fi

) n∑
j=1

(Btj −Btj−1)Fj


= E

 n∑
i,j=1

(Bti −Bti−1)(Btj −Btj−1)FiFj


= E

[
n∑
i=1

|Fi|2(Bti −Bti−1)
2
]

+2E

 ∑
1⩽i<j⩽n

(Bti −Bti−1)(Btj −Btj−1)FiFj


=

n∑
i=1

E
[
|Fi|2(Bti −Bti−1)

2]
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+2
∑

1⩽i<j⩽n
E
[
(Bti −Bti−1)(Btj −Btj−1)FiFj

]
=

n∑
i=1

E[E[|Fi|2(Bti −Bti−1)
2|Fti−1 ]]

+2
∑

1⩽i<j⩽n
E[E[(Bti −Bti−1)(Btj −Btj−1)FiFj |Ftj−1 ]]

=
n∑
i=1

E[|Fi|2E[(Bti −Bti−1)
2|Fti−1 ]]

+2
∑

1⩽i<j⩽n
E
[
(Bti −Bti−1)FiFj E[Btj −Btj−1 | Ftj−1 ]︸ ︷︷ ︸

=0

]

=
n∑
i=1

E
[
|Fi|2E

[
(Bti −Bti−1)

2]]
+2

∑
1⩽i<j⩽n

E[(Bti −Bti−1)FiFj E[Btj −Btj−1 ]︸ ︷︷ ︸
=0

]

=
n∑
i=1

E[|Fi|2(ti − ti−1)]

= E

[
n∑
i=1

|Fi|2(ti − ti−1)

]

= E
[ w T

0
|ut|2dt

]
,

where we applied the tower property (A.33) of conditional expectations and
the facts that Bti −Bti−1 is independent of Fti−1 , with

E[Bti −Bti−1 ] = 0, E
[
(Bti −Bti−1)

2] = ti − ti−1, i = 1, 2, . . . ,n.

6
u2

-

b
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F 2
1
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t1

F 2
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br r
t3 t4
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4

t

Fig. 4.19: Squared simple predictable process t 7→ u2
t .

The extension of the stochastic integral to square-integrable adapted pro-
cesses (ut)t∈R+ is obtained by a denseness and Cauchy sequence argument
using the isometry (4.16), in the same way as in the proof of Proposition 4.12.
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i) By Proposition 4.20 given u ∈ L2(Ω × [0,T ]) a square-integrable adapted
process there exists a sequence (u(n))n⩾0 of simple predictable processes
such that

lim
n→∞

∥u− u(n)∥L2(Ω×[0,T ]) = lim
n→∞

√
E
[ w T

0

∣∣ut − u
(n)
t

∣∣2dt] = 0.

ii) Since the sequence (u(n))n⩾0 converges, it is a Cauchy sequence in
L2(Ω × R+), hence by the Itô isometry (4.16), the sequence

(r T
0 u

(n)
t dBt

)
n⩾0

is a Cauchy sequence in L2(Ω), therefore it admits a limit in the com-
plete space L2(Ω). In this case we let

w T
0
utdBt := lim

n→∞

w T
0
u
(n)
t dBt

and the limit is unique from (4.16) and satisfies (4.16).
iii) The fact that the random variable

w T
0
utdBt is centered can be proved

first for a simple predictable process u(n) of the form (4.13), as

E

[w T
0
u
(n)
t dBt

]
= E

[
n∑
i=1

(Bti −Bti−1)Fi

]

=
n∑
i=1

E[E[(Bti −Bti−1)Fi | Fti−1 ]]

=
n∑
i=1

E[FiE[Bti −Bti−1 | Fti−1 ]]

=
n∑
i=1

E[FiE[Bti −Bti−1 ]]

= 0,

and this identity extends as above from simple predictable processes to
adapted processes (ut)t∈R+ in L2(Ω × R+) by taking the limit as n tends
to infinity in the following equality:

E
[ w T

0
utdt

]
= E

[ w T
0
u
(n)
t dt

]
+E

[ w T
0
ut−u

(n)
t dt

]
= E

[ w T
0
ut−u

(n)
t dt

]
,

since∣∣∣E[ w T
0

(
ut−u

(n)
t

)
dt
]∣∣∣ ⩽ E

[ w T
0

∣∣ut−u
(n)
t

∣∣dt] ⩽√TE
[ w T

0

∣∣ut − u
(n)
t

∣∣2dt].
The Itô isometry (4.16) can be similarly extended from simple pre-
dictable processes to adapted processes (ut)t∈R+ in L2(Ω × R+).
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□

As an application of the Itô isometry (4.16), we note in particular the identity

E

[(w T
0
BtdBt

)2
]
= E

[w T
0

|Bt|2dt
]
=

w T
0

E
[
|Bt|2

]
dt =

w T
0
tdt =

T 2

2 ,

with
w T

0
BtdBt

L2(Ω)
= lim

n→∞

n∑
i=1

Bti−1

(
Bti −Bti−1

)
from (4.15).
The next corollary is obtained by bilinearity from the Itô isometry (4.16) by
the same argument as in Corollary 4.13.
Corollary 4.22. The stochastic integral with respect to Brownian motion
(Bt)t∈R+ satisfies the isometry

E

[w T
0
utdBt

w T
0
vtdBt

]
= E

[w T
0
utvtdt

]
,

for all square-integrable adapted processes (ut)t∈R+ , (vt)t∈R+ .
Proof. Applying the Itô isometry (4.16) to the processes u+ v and u− v, we
have

E

[w T
0
utdBt

w T
0
vtdBt

]
=

1
4

(
E

[(w T
0
utdBt +

w T
0
vtdBt

)2
−
(w T

0
utdBt −

w T
0
vtdBt

)2
])

=
1
4

(
E

[(w T
0
(ut + vt)dBt

)2
]

− E

[(w T
0
(ut − vt)dBt

)2
])

=
1
4

(
E

[w T
0
(ut + vt)

2dt

]
− E

[w T
0
(ut − vt)

2dt

])
=

1
4E

[w T
0

(
(ut + vt)

2 − (ut − vt)
2)dt]

= E

[w T
0
utvtdt

]
.

□

In addition, when the integrand (ut)t∈R+ is not a deterministic function of
time, the random variable

w T
0
utdBt no longer has a Gaussian distribution,

except in some exceptional cases.
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Definite stochastic integral

The definite stochastic integral of an adapted process u ∈ L2
ad(Ω × R+) over

an interval [a, b] ⊂ [0,T ] is defined as
w b
a
utdBt :=

w T
0
1[a,b](t)utdBt,

with in particular
w b
a
dBt =

w T
0
1[a,b](t)dBt = Bb −Ba, 0 ⩽ a ⩽ b,

We also have the Chasles relation
w c
a
utdBt =

w b
a
utdBt +

w c
b
utdBt, 0 ⩽ a ⩽ b ⩽ c,

and the stochastic integral has the following linearity property:
w T

0
(ut + vt)dBt =

w T
0
utdBt +

w T
0
vtdBt, u, v ∈ L2(R+).

4.5 Stochastic Calculus

Fig. 4.20: NGram Viewer output for the term "stochastic calculus".

Stochastic modeling of asset returns

In the sequel, we consider the return at time t ∈ R+ of the risky asset price
process (St)t∈R+ , defined as

dSt
St

= µdt+ σdBt, or dSt = µStdt+ σStdBt. (4.18)

with µ ∈ R and σ > 0. Using the relation
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XT = X0 +
w T

0
dXt, T > 0,

which holds for any process (Xt)t∈R+ , Equation (4.18) can be rewritten in
integral form as

ST = S0 +
w T

0
dSt = S0 + µ

w T
0
Stdt+ σ

w T
0
StdBt, (4.19)

hence the need to define an integral with respect to dBt, in addition to the
usual integral with respect to dt. Note that in view of the definition (4.14),
this is a continuous-time extension of the notion portfolio value based on a
predictable portfolio strategy.

In Proposition 4.21 we have defined the stochastic integral of square-
integrable processes with respect to Brownian motion, thus we have made
sense of the equation (4.19), where (St)t∈R+ is an (Ft)t∈[0,T ]-adapted pro-
cess, which can be rewritten in differential notation as in (4.18).

This model will be used to represent the random price St of a risky asset
at time t. Here the return dSt/St of the asset is made of two components: a
constant return µdt and a random return σdBt parametrized by the coefficient
σ, called the volatility.

Our goal is now to solve Equation (4.18), and for this we will need to introduce
Itô’s calculus in Section 4.5 after a review of classical deterministic calculus.

Deterministic calculus

The fundamental theorem of calculus states that for any continuously differ-
entiable (deterministic) function f we have the integral relation

f(x) = f(0) +
w x

0
f ′(y)dy.

In differential notation this relation is written as the first-order expansion

df(x) = f ′(x)dx, (4.20)

where dx is “infinitesimally small”. Higher-order expansions can be obtained
from Taylor’s formula, which, letting

∆f(x) := f(x+ ∆x) − f(x),

states that

∆f(x) = f ′(x)∆x+
1
2f

′′(x)(∆x)2 +
1
3!
f ′′′(x)(∆x)3 +

1
4!
f (4)(x)(∆x)4 + · · · .
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Note that Relation (4.20), i.e. df(x) = f ′(x)dx, can be obtained by neglecting
all terms of order higher than one in Taylor’s formula, since (∆x)n << ∆x,
n ⩾ 2, as ∆x becomes “infinitesimally small”.

Stochastic calculus

Let us now apply Taylor’s formula to Brownian motion, taking

∆Bt = Bt+∆t −Bt ≃ ±
√

∆t,

and letting
∆f(Bt) := f(Bt+∆t) − f(Bt),

we have

∆f(Bt)

= f ′(Bt)∆Bt +
1
2f

′′(Bt)(∆Bt)2 +
1
3!
f ′′′(Bt)(∆Bt)3 +

1
4!
f (4)(Bt)(∆Bt)4 + · · · .

From the construction of Brownian motion by its small increments ∆Bt =
±

√
∆t, it turns out that the terms in (∆t)2 and ∆t∆Bt ≃ ±(∆t)3/2 can

be neglected in Taylor’s formula at the first order of approximation in ∆t.
However, the term of order two

(∆Bt)2 = (±
√

∆t)2 = ∆t

can no longer be neglected in front of ∆t itself.

Basic Itô formula

For f ∈ C2(R),∗ Taylor’s formula written at the second order for Brownian
motion reads

df(Bt) = f ′(Bt)dBt +
1
2f

′′(Bt)dt, (4.21)

for “infinitesimally small” dt. Note that writing this formula as

df(Bt)

dt
= f ′(Bt)

dBt
dt

+
1
2f

′′(Bt)

does not make sense because the pathwise derivative

dBt
dt

≃ ±
√
dt

dt
≃ ± 1√

dt
≃ ±∞

∗ This means that f is twice continuously differentiable on [0, T ].

178 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Stochastic Finance

of Bt with respect to t does not exist. Integrating (4.21) on both sides and
using the relation

f(Bt) − f(B0) =
w t

0
df(Bs)

together with (4.21), we get the integral form of Itô’s formula for Brownian
motion, i.e.

f(Bt) = f(B0) +
w t

0
f ′(Bs)dBs +

1
2
w t

0
f ′′(Bs)ds.

Itô processes

We now turn to the general expression of Itô’s formula, which is stated for
Itô processes.
Definition 4.23. An Itô process is a stochastic process (Xt)t∈R+ that can
be written as

Xt = X0 +
w t

0
vsds+

w t
0
usdBs, t ⩾ 0, (4.22)

or in differential notation

dXt = vtdt+ utdBt,

where (ut)t∈R+ and (vt)t∈R+ are square-integrable adapted processes.

In what follows, we let C1,2
b (R+ × R) denote the set of functions f(t,x) of

two variables which are continuously differentiable on t ∈ R+ and twice
differentiable in x ∈ R, with bounded derivatives. Given f ∈ C1,2

b (R+ ×

R), we let ∂f
∂t

denote partial differentiation with respect to the first (time)

variable in f(t,x), while ∂f

∂x
denotes partial differentiation with respect to

the second (price) variable in f(t,x).
Theorem 4.24. (Itô formula for Itô processes). For any Itô process (Xt)t∈R+

of the form (4.22) and any f ∈ C1,2
b (R+ × R),we have

f(t,Xt)

= f(0,X0) +
w t

0
∂f

∂s
(s,Xs)ds+

w t
0
vs
∂f

∂x
(s,Xs)ds+

w t
0
us
∂f

∂x
(s,Xs)dBs

+
1
2
w t

0
|us|2

∂2f

∂x2 (s,Xs)ds. (4.23)
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Proof. The proof of the Itô formula can be outlined as follows in the case
where (Xt)t∈R+ = (Bt)t∈R+ is a standard Brownian motion and f(x) does
not depend on time t. We refer to Theorem II-32, page 79 of Protter (2004)
for the general case.

Let {0 = tn0 ⩽ tn1 ⩽ · · · ⩽ tnn = t}, n ⩾ 1, be a refining sequence of
partitions of [0, t] tending to the identity. We have the telescoping identity

f(Bt) − f(B0) =
n∑
k=1

(
f(Btni ) − f(Btni−1

)
)
,

and from Taylor’s formula

f(y) − f(x) = (y− x)
∂f

∂x
(x) +

1
2 (y− x)2 ∂

2f

∂x2 (x) +R(x, y),

where the remainder R(x, y) satisfies R(x, y) ⩽ o(|y− x|2), we get

f(Bt) − f(B0) =
n∑
k=1

(Btni −Btni−1
)
∂f

∂x
(Btni−1

) +
1
2

n∑
k=1

|Btni −Btni−1
|2 ∂

2f

∂x2 (Btni−1
)

+
n∑
k=1

R(Btni ,Btni−1
).

It remains to show that as n tends to infinity the above converges to

f(Bt) − f(B0) =
w t

0
∂f

∂x
(Bs)dBs +

1
2
w t

0
∂2f

∂x2 (Bs)ds.

□

From the relation
w t

0
df(s,Xs) = f(t,Xt) − f(0,X0),

we can rewrite (4.23) as
w t

0
df(s,Xs) =

w t
0
∂f

∂s
(s,Xs)ds+

w t
0
vs
∂f

∂x
(s,Xs)ds+

w t
0
us
∂f

∂x
(s,Xs)dBs

+
1
2
w t

0
|us|2

∂2f

∂x2 (s,Xs)ds,

which allows us to rewrite (4.23) in differential notation, as
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df(t,Xt) (4.24)

=
∂f

∂t
(t,Xt)dt+ vt

∂f

∂x
(t,Xt)dt+ ut

∂f

∂x
(t,Xt)dBt +

1
2 |ut|2

∂2f

∂x2 (t,Xt)dt.

In case the function x 7→ f(x) does not depend on the time variable t we get

df(Xt) = vt
∂f

∂x
(Xt)dt+ ut

∂f

∂x
(Xt)dBt +

1
2 |ut|2

∂2f

∂x2 (Xt)dt.

Taking ut = 1, vt = 0 and X0 = 0 in (4.22) yields Xt = Bt, in which case
the Itô formula (4.23)-(4.24) reads

f(t,Bt) = f(0,B0)+
w t

0
∂f

∂s
(s,Bs)ds+

w t
0
∂f

∂x
(s,Bs)dBs+

1
2
w t

0
∂2f

∂x2 (s,Bs)ds,

i.e. in differential notation:

df(t,Bt) =
∂f

∂t
(t,Bt)dt+

∂f

∂x
(t,Bt)dBt +

1
2
∂2f

∂x2 (t,Bt)dt. (4.25)

Bivariate Itô formula

Next, consider two Itô processes (Xt)t∈R+ and (Yt)t∈R+ written in integral
form as

Xt = X0 +
w t

0
vsds+

w t
0
usdBs, t ⩾ 0,

and
Yt = Y0 +

w t
0
bsds+

w t
0
asdBs, t ⩾ 0,

or in differential notation as

dXt = vtdt+ utdBt, and dYt = btdt+ atdBt, t ⩾ 0.

The Itô formula can also be written for functions f ∈ C1,2,2(R+ × R2) of two
state variables as

df(t,Xt,Yt) =
∂f

∂t
(t,Xt,Yt)dt+

∂f

∂x
(t,Xt,Yt)dXt +

1
2 |ut|2

∂2f

∂x2 (t,Xt,Yt)dt

+
∂f

∂y
(t,Xt,Yt)dYt +

1
2 |at|2

∂2f

∂y2 (t,Xt,Yt)dt+ utat
∂2f

∂x∂y
(t,Xt,Yt)dt.

(4.26)
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Itô multiplication table

Applying the bivariate Itô formula (4.26) to the function f(x, y) := xy shows
that

d(XtYt) = XtdYt + YtdXt + atutdt = XtdYt + YtdXt + dXt • dYt (4.27)

where the product

dXt • dYt = (vtdt+ utdBt) • (btdt+ atdBt)

= btvt dt • dt+ btut dt • dBt + atvt dt • dBt + atut dBt • dBt

= atutdt

can be computed according to the Itô rule

dt • dt = 0, dt • dBt = 0, dBt • dBt = dt, (4.28)

which can be encoded in the following Itô multiplication table:

• dt dBt

dt 0 0
dBt 0 dt

Table 4.1: Itô multiplication table.

It follows similarly from the Itô Table 4.1 that

(dXt)
2 = (vtdt+ utdBt) • (vtdt+ utdBt)

= (vt)
2dt • dt+ (ut)

2 dBt • dBt + 2utvt dt • dBt

= (ut)
2dt.

Consequently, (4.24) can be rewritten as

df(t,Xt) =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dXt +

1
2
∂2f

∂x2 (t,Xt)dXt • dXt,
(4.29)

and the Itô formula for functions f ∈ C1,2,2(R+ × R2) of two state variables
can be similarly rewritten as
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df(t,Xt,Yt) =
∂f

∂t
(t,Xt,Yt)dt+

∂f

∂x
(t,Xt,Yt)dXt +

1
2
∂2f

∂x2 (t,Xt,Yt)(dXt)
2

+
∂f

∂y
(t,Xt,Yt)dYt +

1
2
∂2f

∂y2 (t,Xt,Yt)(dYt)2 +
∂2f

∂x∂y
(t,Xt,Yt)(dXt • dYt).

Examples

Applying Itô’s formula (4.25) to (Bt)2 with

(Bt)
2 = f(t,Bt) and f(t,x) = x2,

and
∂f

∂t
(t,x) = 0, ∂f

∂x
(t,x) = 2x, 1

2
∂2f

∂x2 (t,x) = 1,

we find

d((Bt)
2) = df(Bt)

=
∂f

∂t
(t,Bt)dt+

∂f

∂x
(t,Bt)dBt +

1
2
∂2f

∂x2 (t,Bt)dt

= 2BtdBt + dt.

Note that from the Itô Table 4.1 we could also write directly

d((Bt)
2) = BtdBt +BtdBt + (dBt)

2 = 2BtdBt + dt.

Next, by integration in t ∈ [0,T ] we find

B2
T = B2

0 + 2
w T

0
BsdBs +

w T
0
dt = 2

w T
0
BsdBs + T , (4.30)

hence the relation
w T

0
BsdBs =

1
2
(
B2
T − T

)
, (4.31)

see Exercises 4.7 and 4.15 for the probability distribution of
w T

0
BsdBs.

Similarly, we have

i) d
(
(Bt)3) = 3(Bt)2dBt + 3Btdt.

Letting f(x) := x3 with f ′(x) = 3x2 and f ′′(x) = 6x, we have

d((Bt)
3) = df(Bt) = f ′(Bt)dBt +

1
2f

′′(Bt)dt = 3(Bt)2dBt + 3Btdt.
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ii) d(sinBt) = cos(Bt)dBt − 1
2 sin(Bt)dt.

Letting f(x) := sin(x) with f ′(x) = cos(x), f ′′(x) = − sin(x), we have

d sin(Bt) = df(Bt)

= f ′(Bt)dBt +
1
2f

′′(Bt)dt

= cos(Bt)dBt − 1
2 sin(Bt)dt.

iii) d eBt = eBtdBt +
1
2 eBtdt.

Letting f(x) := ex with f ′(x) = ex, f ′′(x) = ex, we have

d eBt = df(Bt)

= f ′(Bt)dBt +
1
2f

′′(Bt)dt

= eBtdBt +
1
2 eBtdt.

iv) d logBt =
1
Bt
dBt − 1

2(Bt)2 dt.

Letting f(x) := log x with f ′(x) = 1/x and f ′′(x) = −1/x2, we have

d logBt = df(Bt) = f ′(Bt)dBt +
1
2f

′′(Bt)dt =
dBt
Bt

− dt

2(Bt)2 .

v) d etBt = Bt etBtdt+
t2

2 etBtdt+ t etBtdBt.

Letting f(t,x) := ext with

∂f

∂t
(t,x) = x ext, ∂f

∂x
(t,x) = t ext, ∂2f

∂x2 (t,x) = t2 ext,

we have

d etBt = df(t,Bt)

=
∂f

∂t
(t,Bt)dt+

∂f

∂x
(t,Bt)dBt +

1
2
∂2f

∂x2 (t,Bt)dt

= Bt etBtdt+ t etBtdBt +
t2

2 etBtdt.

vi) d cos(2t+Bt) = −2 sin(2t+Bt)dt− sin(2t+Bt)dBt − 1
2 cos(2t+Bt)dt.

Letting f(t,x) := cos(2t+ x) with
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∂f

∂t
(t,x) = −2 sin(2t+x), ∂f

∂x
(t,x) = − sin(2t+x), ∂2f

∂x2 (t,x) = − cos(2t+x),

we have

d cos(2t+Bt) = df(t,Bt)

=
∂f

∂t
(t,Bt)dt+

∂f

∂x
(t,Bt)dBt +

1
2
∂2f

∂x2 (t,Bt)dt

= −2 sin(2t+Bt)dt− sin(2t+Bt)dBt − 1
2 cos(2t+Bt)dt.

Notation

We close this section with some comments on the practice of Itô’s calculus. In
certain finance textbooks, Itô’s formula for e.g. geometric Brownian motion
(St)t∈R+ given by

dSt = µStdt+ σStdBt

can be found written in the notation

f(T ,ST ) = f(0,S0) + σ
w T

0
St
∂f

∂St
(t,St)dBt + µ

w T
0
St
∂f

∂St
(t,St)dt

+
w T

0
∂f

∂t
(t,St)dt+

1
2σ

2
w T

0
S2
t
∂2f

∂S2
t

(t,St)dt,

or
df(St) = σSt

∂f

∂St
(St)dBt + µSt

∂f

∂St
(St)dt+

1
2σ

2S2
t
∂2f

∂S2
t

(St)dt.

The notation ∂f

∂St
(St) can in fact be easily misused in combination with the

fundamental theorem of classical calculus, and potentially leads to the wrong
identity

����������
df(St) =

∂f

∂St
(St)dSt,

as in the following actual example:

Fig. 4.21: Wrong application of Itô’s formula (sample).
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Similarly, writing

df(Bt) =
∂f

∂x
(Bt)dBt +

1
2
∂2f

∂x2 (Bt)dt

is consistent, while writing

df(Bt) =
∂f(Bt)

∂Bt
dBt +

1
2
∂2f(Bt)

∂B2
t

dt

is a potential source of confusion. Note also that the right-hand side of the Itô
formula uses partial derivatives while its left-hand side is a total derivative.

Stochastic differential equations

In addition to geometric Brownian motion there exists a large family of
stochastic differential equations that can be studied, although most of the
time they cannot be explicitly solved. Let now

σ : R+ × Rn −→ Rd ⊗ Rn

where Rd ⊗ Rn denotes the space of d× n matrices, and

b : R+ × Rn −→ R

satisfy the global Lipschitz condition

∥σ(t,x) − σ(t, y)∥2 + ∥b(t,x) − b(t, y)∥2 ⩽ K2∥x− y∥2,

t ∈ R+, x, y ∈ Rn. Then there exists a unique “strong” solution to the
stochastic differential equation

Xt = X0 +
w t

0
b(s,Xs)ds+

w t
0
σ(s,Xs)dBs, t ⩾ 0, (4.32)

i.e., in differential notation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t ⩾ 0,

where (Bt)t∈R+ is a d-dimensional Brownian motion, see e.g. Theorem V-7
in Protter (2004). In addition, the solution process (Xt)t∈R+ of (4.32) has
the Markov property, see § V-6 of Protter (2004).
The term σ(s,Xs) in (4.32) will be interpreted later on in Chapters 8-9 as a
local volatility component.
Stochastic differential equations can be used to model the behaviour of a
variety of quantities, such as
• stock prices,
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• interest rates,
• exchange rates,
• weather factors,
• electricity/energy demand,
• commodity (e.g. oil) prices, etc.

Next, we consider several examples of stochastic differential equations that
can be solved explicitly using Itô’s calculus, in addition to geometric Brown-
ian motion. See e.g. § II-4.4 of Kloeden and Platen (1999) for more examples
of explicitly solvable stochastic differential equations.

Examples of stochastic differential equations

1. Consider the mean-reverting stochastic differential equation

dXt = −αXtdt+ σdBt, X0 = x0, (4.33)

with α > 0 and σ > 0.

 N=10000; t <- 0:(N-1); dt <- 1.0/N;alpha=5; sigma=0.4;
dB <- rnorm(N,mean=0,sd=sqrt(dt));X <- rep(0,N);X[1]=0.5

 for (j in 2:N){X[j]=X[j-1]-alpha*X[j-1]*dt+sigma*dB[j]}
plot(t*dt, X, xlab = "t", ylab = "", type = "l", ylim = c(-0.5,1), col = "blue")

 abline(h=0)
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Xt

t

Fig. 4.22: Simulated path of (4.33) with α = 10, σ = 0.2 and X0 = 0.5.

We look for a solution of the form

Xt = a(t)Yt = a(t)
(
x0 +

w t
0
b(s)dBs

)
,

where
Yt := x0 +

w t
0
b(s)dBs,

and a(·), b(·) are deterministic functions of time. After applying The-
orem 4.24 to the Itô process x0 +

r t
0 b(s)dBs of the form (4.22) with
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ut = b(t) and v(t) = 0, and to the function f(t,x) = a(t)x, we find

dXt = d(a(t)Yt)

= Yta
′(t)dt+ a(t)dYt

= Yta
′(t)dt+ a(t)b(t)dBt. (4.34)

By identification of (4.33) with (4.34), we geta′(t) = −αa(t)

a(t)b(t) = σ,

hence a(t) = a(0) e−αt = e−αt and b(t) = σ/a(t) = σ eαt, which shows
that

Xt = x0 e−αt + σ
w t

0
e−(t−s)αdBs, t ⩾ 0, (4.35)

Using integration by parts, we can also write

Xt = x0 e−αt + σBt − σα
w t

0
e−(t−s)αBsds, t ⩾ 0, (4.36)

Remark: the solution of the equation (4.33) cannot be written as a func-
tion f(t,Bt) of t and Bt as in the proof of Proposition 5.15.

2. Consider the stochastic differential equation

dXt = tXtdt+ et2/2dBt, X0 = x0. (4.37)

 N=10000; T<-2.0; t <- 0:(N-1); dt <- T/N;
dB <- rnorm(N,mean=0,sd= sqrt(dt));X <- rep(0,N);X[1]=0.5

 for (j in 2:N){X[j]=X[j-1]+j*X[j-1]*dt*dt+exp(j*dt*j*dt/2)*dB[j]}
plot(t*dt, X, xlab = "t", ylab = "", type = "l", ylim = c(-0.5,10), col = "blue")

 abline(h=0)

Looking for a solution of the form Xt = a(t)
(
X0 +

r t
0 b(s)dBs

)
, where

a(·) and b(·) are deterministic functions of time, we get a′(t)/a(t) = t

and a(t)b(t) = et2/2, hence a(t) = et2/2 and b(t) = 1, which yields
Xt = et2/2(X0 +Bt), t ⩾ 0.
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Fig. 4.23: Simulated path of (4.37).

3. Consider the stochastic differential equation

dYt = (σ2 − 2αYt)dt+ 2σ
√
YtdBt, (4.38)

where Y0 > 0, α ∈ R, and σ > 0.

 N=10000; t <- 0:(N-1); dt <- 1.0/N;mu=-5;sigma=1;
dB <- rnorm(N,mean=0,sd=sqrt(dt));Y <- rep(0,N);Y[1]=0.5

 for (j in 2:N){Y[j]=max(0,Y[j-1] +(2*mu*Y[j-1]+sigma*sigma)*dt
+2*sigma*sqrt(Y[j-1])*dB[j])}

plot(t*dt, Y, xlab = "t", ylab = "", type = "l", ylim = c(-0.1,1), col = "blue")
 abline(h=0)

Letting
Xt := e−αt√Y0 + σ

w t
0

e−(t−s)αdBs, t ⩾ 0,

denote the solution of dXt = −αXtdt+ σdBt, see (4.35), by the Itô for-
mula the process Yt := (Xt)2 satisfies the stochastic differential equation

dYt = 2XtdXt + σ2dt

= −2αX2
t dt+ 2σXtdBt + σ2dt

= (σ2 − 2αX2
t )dt+ 2σ|Xt|sign (Xt)dBt

= (σ2 − 2αYt)dt+ 2σ
√
YtdWt,

where the process

Wt :=
w t

0
sign (Xτ )dBτ , t ⩾ 0,

is a standard Brownian motion by the Lévy characterization theorem, see
e.g. Theorem IV.3.6 in Revuz and Yor (1994). In this case, Yt = (Xt)2 is
called a weak solution of (4.38).
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Fig. 4.24: Simulated path of (4.38) with α = −5 and σ = 1.

See Proposition 2.1 in Hefter and Herzwurm (2017) for the representation
of the strong solution of (4.38).

Exercises

Exercise 4.1 Compute E[BsBt] in terms of s, t ⩾ 0.

Exercise 4.2 Let (Bt)t∈R+ denote a standard Brownian motion. Let c > 0.
Among the following processes, tell which is a standard Brownian motion
and which is not. Justify your answer.

a) (Xt)t∈R+ :=
(
Bc+t −Bc

)
t∈R+

,
b) (Xt)t∈R+ :=

(
Bct2

)
t∈R+

,
c) (Xt)t∈R+ :=

(
cBt/c2

)
t∈R+

,
d) (Xt)t∈R+ :=

(
Bt +Bt/2

)
t∈R+

.

Exercise 4.3 Let (Bt)t∈R+ denote a standard Brownian motion. Compute
the stochastic integrals

w T
0

2dBt and
w T

0

(
2 × 1[0,T/2](t) + 1(T/2,T ](t)

)
dBt

and determine their probability distributions (including mean and variance).

Exercise 4.4 Determine the probability distribution (including mean and
variance) of the stochastic integral

w 2π

0
sin(t) dBt.

Exercise 4.5 Let T > 0. Show that for f : [0,T ] 7→ R a differentiable function
such that f(T ) = 0, we have
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w T
0
f(t)dBt = −

w T
0
f ′(t)Btdt.

Hint: Apply Itô’s calculus to t 7→ f(t)Bt.

Exercise 4.6 Let (Bt)t∈R+ denote a standard Brownian motion.

a) Find the probability distribution of the stochastic integral
r 1
0 t

2dBt.
b) Find the probability distribution of the stochastic integral

r 1
0 t

−1/2dBt.

Exercise 4.7 Find the mean, variance and probability distribution of the
stochastic integral

w T
0
Bt dBt.

Exercise 4.8 Given (Bt)t∈R+ a standard Brownian motion and n ⩾ 1, let
the random variable Xn be defined as

Xn :=
w 2π

0
sin(nt)dBt, n ⩾ 1.

a) Give the probability distribution of Xn for all n ⩾ 1.
b) Show that (Xn)n⩾1 is a sequence of identically distributed and pairwise

independent random variables.

Hint: We have sin a sin b = 1
2
(

cos(a− b) − cos(a+ b)
)
, a, b ∈ R.

Exercise 4.9 Apply the Itô formula to the process Xt := sin2(Bt), t ⩾ 0.

Exercise 4.10 Let (Bt)t∈R+ denote a standard Brownian motion.

a) Using the Itô isometry and the known relations

BT =
w T

0
dBt and B2

T = T + 2
w T

0
BtdBt,

compute the third and fourth moments E[B3
T ] and E[B4

T ].
b) Give the third and fourth moments of the centered normal distribution

with variance σ2.

Exercise 4.11 Let (Bt)t∈R+ be a standard Brownian motion.

a) Show that

E

[w t
0

|Bs|
s
ds

]
< ∞, t > 0.

Hint: The Gaussian distribution N (0, s) has the probability density func-
tion x 7→ e−x2/(2s)/

√
2πs.
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b) We let
B̂t := Bt −

w t
0
Bs
s
ds, t > 0.

Compute the mean and variance of B̂t.
c) Show that B̂t is independent of Bt for all t > 0.

Hint: As the random vector (Bt, B̂t) has a bivariate Gaussian distribution,
the random variables Bt and B̂t are independent if and only if they are
uncorrelated.

Exercise 4.12 Let (Bt)t∈R+ denote a standard Brownian motion. Given
T > 0, find the stochastic integral decomposition of (BT )3 as

(BT )
3 = C +

w T
0
ζt,T dBt (4.39)

where C ∈ R is a constant and (ζt,T )t∈[0,T ] is an adapted process to be de-
termined.

Exercise 4.13 Let f ∈ L2([0,T ]), and consider a standard Brownian motion
(Bt)t∈[0,T ].
a) Compute the conditional expectation

E
[

e
r T

0 f (s)dBs
∣∣Ft] , 0 ⩽ t ⩽ T ,

where (Ft)t∈[0,T ] denotes the filtration generated by (Bt)t∈[0,T ].
b) Using the result of Question (a), show that the process

t 7−→ exp
(w t

0
f(s)dBs − 1

2
w t

0
f2(s)ds

)
, 0 ⩽ t ⩽ T ,

is an (Ft)t∈[0,T ]-martingale, where (Ft)t∈[0,T ] denotes the filtration gen-
erated by (Bt)t∈[0,T ].

c) By applying the result of Question (b) to the function f(t) := σ1[0,T ](t),
show that the geometric Brownian motion process

(
eσBt−σ2t/2)

t∈[0,T ] is
an (Ft)t∈[0,T ]-martingale for any σ ∈ R.

Exercise 4.14 Consider two assets whose prices S(1)
t , S(2)

t follow the Bachelier
dynamics

dS
(1)
t = µS

(1)
t dt+ σ1dW

(1)
t , dS

(2)
t = µS

(2)
t dt+ σ2dW

(2)
t , t ∈ [0,T ],

where
(
W

(1)
t

)
t∈[0,T ],

(
W

(2)
t

)
t∈[0,T ] are two Brownian motions with correlation

ρ ∈ [−1, 1], i.e. we have dW (1)
t

• dW
(2)
t = ρdt. Show that the spread St :=
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S
(2)
t − S

(1)
t also satisfies an equation of the form

dSt = µStdt+ σdWt,

where µ ∈ R, (Wt)t∈R+ is a standard Brownian motion, and σ > 0 should
be given in terms of σ1, σ2 and ρ.

Hint: By the Lévy characterization theorem, see e.g. Theorem IV.3.6 in Revuz
and Yor (1994), Brownian motion (Wt)t∈R+ is the only continuous martingale
such that dWt • dWt = dt.

Exercise 4.15

a) Compute the moment generating function

E

[
exp

(
β
w T

0
BtdBt

)]
for all β < 1/T .

Hint: Expand (BT )
2 using the Itô formula as in (4.30).

b) Find the probability distribution of the stochastic integral
w T

0
BtdBt.

Exercise 4.16

a) Solve the stochastic differential equation

dXt = −bXtdt+ σ e−btdBt, t ⩾ 0, (4.40)

where (Bt)t∈R+ is a standard Brownian motion and σ, b ∈ R.
b) Solve the stochastic differential equation

dXt = −bXtdt+ σ e−atdBt, t ⩾ 0, (4.41)

where (Bt)t∈R+ is a standard Brownian motion and a, b,σ > 0 are positive
constants.

c) Find the probability distribution of Xt, t > 0.

Exercise 4.17 Given T > 0, let (Xt)t∈[0,T ) denote the solution of the stochas-
tic differential equation

dXt = σdBt − Xt

T − t
dt, t ∈ [0,T ), (4.42)

under the initial condition X0 = 0 and σ > 0.
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a) Show that
Xt = (T − t)

w t
0

σ

T − s
dBs, 0 ⩽ t < T .

Hint: Start by computing d(Xt/(T − t)) using the Itô formula.
b) Show that E[Xt] = 0 for all t ∈ [0,T ).
c) Show that Var[Xt] = σ2t(T − t)/T for all t ∈ [0,T ).
d) Show that limt→T Xt = 0 in L2(Ω). The process (Xt)t∈[0,T ] is called a

Brownian bridge.

Exercise 4.18 Exponential Vašíček (1977) model (1). Consider a Vasicek
process (rt)t∈R+ solving of the stochastic differential equation

drt = (a− brt)dt+ σdBt, t ⩾ 0,

where (Bt)t∈R+ is a standard Brownian motion and σ, a, b > 0 are positive
constants. Show that the exponential Xt := ert satisfies a stochastic differ-
ential equation of the form

dXt = Xt

(
ã− b̃f(Xt)

)
dt+ σg(Xt)dBt,

where the coefficients ã and b̃ and the functions f(x) and g(x) are to be
determined.

Exercise 4.19 Exponential Vasicek model (2). Consider a short-term rate
interest rate process (rt)t∈R+ in the exponential Vasicek model:

drt = (η− a log rt)rtdt+ σrtdBt, (4.43)

where η, a,σ are positive parameters and (Bt)t∈R+ is a standard Brownian
motion.

a) Find the solution (Zt)t∈R+ of the stochastic differential equation

dZt = −aZtdt+ σdBt

as a function of the initial condition Z0, where a and σ are positive pa-
rameters.

b) Find the solution (Yt)t∈R+ of the stochastic differential equation

dYt = (θ− aYt)dt+ σdBt (4.44)

as a function of the initial condition Y0. Hint: Let Zt := Yt − θ/a.
c) Let Xt = eYt , t ∈ R+. Determine the stochastic differential equation

satisfied by (Xt)t∈R+ .
d) Find the solution (rt)t∈R+ of (4.43) in terms of the initial condition r0.
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e) Compute the conditional mean∗ E[rt|Fu].
f) Compute the conditional variance

Var[rt|Fu] := E[r2
t |Fu] − (E[rt|Fu])2

of rt, 0 ⩽ u ⩽ t, where (Fu)u∈R+ denotes the filtration generated by the
Brownian motion (Bt)t∈R+ .

g) Compute the asymptotic mean and variance limt→∞ E[rt] and limt→∞ Var[rt].

Exercise 4.20 Cox-Ingersoll-Ross (CIR) model. Consider the equation

drt = (α− βrt)dt+ σ
√
rtdBt (4.45)

modeling the variations of a short-term interest rate process rt, where α,β,σ
and r0 are positive parameters and (Bt)t∈R+ is a standard Brownian motion.

a) Write down the equation (4.45) in integral form.
b) Let u(t) = E[rt]. Show, using the integral form of (4.45), that u(t) satisfies

the differential equation

u′(t) = α− βu(t),

and compute E[rt] for all t ⩾ 0.
c) By an application of Itô’s formula to r2

t , show that

dr2
t = rt(2α+ σ2 − 2βrt)dt+ 2σr3/2

t dBt. (4.46)

d) Using the integral form of (4.46), find a differential equation satisfied by
v(t) := E[r2

t ] and compute E[r2
t ] for all t ⩾ 0.

e) Show that

Var[rt] = r0
σ2

β

(
e−βt − e−2βt)+ ασ2

2β2
(
1 − e−βt)2, t ⩾ 0.

Problem 4.21 Itô-Tanaka formula. Let (Bt)t∈R+ be a standard Brownian
motion started at B0 ∈ R.

a) Does the Itô formula apply to the European call option payoff function
f(x) := (x−K)+? Why?

b) For every ε > 0, consider the approximation fε(x) of f(x) := (x−K)+

defined by
∗ One may use the Gaussian moment generating function E[ eX ] = eα2/2 for X ≃
N (0, α2).
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fε(x) :=



x−K if x > K + ε,

1
4ε (x−K + ε)2 if K − ε < x < K + ε,

0 if x < K − ε.

Plot the graph of the function x 7→ fε(x) for ε = 1 and K = 10.
c) Using the Itô formula, show that

fε(BT ) = fε(B0) +
w T

0
f ′
ε(Bt)dBt (4.47)

+
1
4εℓ

({
t ∈ [0,T ] : K − ε < Bt < K + ε

})
,

where ℓ denotes the measure of time length (Lebesgue measure) in R.
d) Show that limε→0 ∥1[K,∞)(·) − f ′

ε(·)∥L2(R+) = 0.
e) Show, using the Itô isometry,∗ that the limit

LK[0,T ] := lim
ε→0

1
2εℓ({t ∈ [0,T ] : K − ε < Bt < K + ε})

exists in L2(Ω), and prove the Itô-Tanaka formula

(BT −K)+ = (B0 −K)+ +
w T

0
1[K,∞)(Bt)dBt +

1
2LK[0,T ]. (4.48)

The quantity LK[0,T ] is called the local time spent by Brownian motion at
the level K.

Problem 4.22 Lévy’s construction of Brownian motion. The goal of this
problem is to prove the existence of standard Brownian motion (Bt)t∈[0,1] as
a stochastic process satisfying the four properties of Definition 4.1, i.e.:

1. B0 = 0 almost surely,

2. The sample trajectories t 7→ Bt are continuous, with probability 1.

3. For any finite sequence of times t0 < t1 < · · · < tn, the increments

Bt1 −Bt0 ,Bt2 −Bt1 , . . . ,Btn −Btn−1

are independent.

4. For any given times 0 ⩽ s < t, Bt − Bs has the Gaussian distribution
N (0, t− s) with mean zero and variance t− s.

∗ Hint: Show that lim
ε→0

E

[ w T

0

(
1[K,∞)(Bt) − f ′

ε(Bt)
)2

dt

]
= 0.
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The construction will proceed by the linear interpolation scheme illustrated
in Figure 4.10. We work on the space C0([0, 1]) of continuous functions on
[0, 1] started at 0, with the norm

∥f∥∞ := Max
t∈[0,1]

|f(t)|

and the distance
∥f − g∥∞ := Max

t∈[0,1]
|f(t) − g(t)|.

The following ten questions are interdependent.

a) Show that for any Gaussian random variable X ≃ N (0,σ2), we have

P(|X| ⩾ ε) ⩽
σ

ε
√
π/2

e−ε2/(2σ2), ε > 0.

Hint: Start from the inequality E[(X − ε)+] ⩾ 0 and compute the left-
hand side.

b) Let X and Y be two independent centered Gaussian random variables
with variances α2 and β2. Show that the conditional distribution

P(X ∈ dx | X + Y = z)

of X given X +Y = z is Gaussian with mean α2z/(α2 + β2) and variance
α2β2/(α2 + β2).

Hint: Use the definition

P(X ∈ dx | X + Y = z) :=
P(X ∈ dx and X + Y ∈ dz)

P(X + Y ∈ dz)

and the formulas

dP(X ⩽ x) :=
1√

2πα2
e−x2/(2α2)dx, dP(Y ⩽ x) :=

1√
2πβ2

e−x2/(2β2)dx,

where dx (resp. dy) represents a “small” interval [x,x+ dx] (resp. [y, y+
dy]).

c) Let (Bt)t∈R+ denote a standard Brownian motion and let 0 < u < v. Give
the distribution of B(u+v)/2 given that Bu = x and Bv = y.

Hint: Note that given that Bu = x, the random variable Bv can be written
as

Bv = (Bv −B(u+v)/2) + (B(u+v)/2 −Bu) + x, (4.49)

and apply the result of Question (b) after identifying X and Y in the
above decomposition (4.49).
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d) Consider the random sequences

Z(0) =
(
0,Z(0)

1
)

Z(1) =
(
0,Z(1)

1/2,Z(0)
1
)

Z(2) =
(
0,Z(2)

1/4,Z(1)
1/2,Z(2)

3/4,Z(0)
1
)

Z(3) =
(
0,Z(3)

1/8,Z(2)
1/4,Z(3)

3/8,Z(1)
1/2,Z(3)

5/8,Z(2)
3/4,Z(3)

7/8,Z(0)
1
)

...
...

Z(n)=
(
0,Z(n)

1/2n ,Z(n)
2/2n ,Z(n)

3/2n ,Z(n)
4/2n , . . . ,Z(n)

1
)

Z(n+1)=
(
0,Z(n+1)

1/2n+1 ,Z(n)
1/2n ,Z(n+1)

3/2n+1 ,Z(n+1)
2/2n ,Z(n+1)

5/2n+1 ,Z(n+1)
3/2n , . . . ,Z(n+1)

1
)

with Z
(n)
0 = 0, n ⩾ 0, defined recursively as

i) Z
(0)
1 ≃ N (0, 1),

ii) Z
(1)
1/2 ≃

Z
(0)
0 + Z

(0)
1

2 + N (0, 1/4),

iii) Z
(2)
1/4 ≃

Z
(1)
0 + Z

(1)
1/2

2 +N (0, 1/8), Z
(2)
3/4 ≃

Z
(1)
1/2 + Z

(0)
1

2 +N (0, 1/8),

and more generally

Z
(n+1)
(2k+1)/2n+1 =

Z
(n)
k/2n + Z

(n)
(k+1)/2n

2 +N (0, 1/2n+2), k = 0, 1, . . . , 2n−1,

where N (0, 1/2n+2) is an independent centered Gaussian sample with
variance 1/2n+2, and Z

(n+1)
k/2n := Z

(n)
k/2n , k = 0, 1, . . . , 2n.

In what follows we denote by
(
Z
(n)
t

)
t∈[0,1] the continuous-time ran-

dom path obtained by linear interpolation of the sequence points in(
Z
(n)
k/2n

)
k=0,1,...,2n .

Draw a sample of the first four linear interpolations
(
Z
(0)
t

)
t∈[0,1],

(
Z
(1)
t

)
t∈[0,1],(

Z
(2)
t

)
t∈[0,1],

(
Z
(3)
t

)
t∈[0,1], and label the values of Z(n)

k/2n on the graphs for
k = 0, 1, . . . , 2n and n = 0, 1, 2, 3.

e) Using an induction argument, explain why for all n ⩾ 0 the sequence
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Z(n) =
(
0,Z(n)

1/2n ,Z(n)
2/2n ,Z(n)

3/2n ,Z(n)
4/2n , . . . ,Z(n)

1
)

has same distribution as the sequence

B(n) :=
(
B0,B1/2n ,B2/2n ,B3/2n ,B4/2n , . . . ,B1

)
.

Hint: Compare the constructions of Questions (c) and (d) and note that
under the above linear interpolation, we have

Z
(n)
(2k+1)/2n+1 =

Z
(n)
k/2n + Z

(n)
(k+1)/2n

2 , k = 0, 1, . . . , 2n − 1.

f) Show that for any εn > 0 we have

P
(∥∥Z(n+1) −Z(n)

∥∥
∞ ⩾ εn

)
⩽ 2nP

(
|Z(n+1)

1/2n+1 −Z
(n)
1/2n+1 | ⩾ εn

)
.

Hint: Use the inequality

P

(2n−1⋃
k=0

Ak

)
⩽

2n−1∑
k=0

P(Ak)

for a suitable choice of events (Ak)k=0,1,...,2n−1.
g) Use the results of Questions (a) and (f) to show that for any εn > 0 we

have
P
(∥∥Z(n+1) −Z(n)

∥∥
∞ ⩾ εn

)
⩽

2n/2

εn
√

2π
e−ε2

n2n+1 .

h) Taking εn = 2−n/4, show that

P

∑
n⩾0

∥∥Z(n+1) −Z(n)
∥∥

∞ < ∞

 = 1.

Hint: Show first that∑
n⩾0

P
(∥∥Z(n+1) −Z(n)

∥∥
∞ ⩾ 2−n/4

)
< ∞,

and apply the Borel-Cantelli lemma.
i) Show that with probability one, the sequence

{(
Z
(n)
t

)
t∈[0,1], n ⩾ 1

}
con-

verges uniformly on [0, 1] to a continuous (random) function (Zt)t∈[0,1].

Hint: Use the fact that C0([0, 1]) is a complete space for the ∥ · ∥∞ norm.
j) Argue that the limit (Zt)t∈[0,1] is a standard Brownian motion on [0, 1]

by checking the four relevant properties.
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Problem 4.23 Consider (Bt)t∈R+ a standard Brownian motion, and for any
n ⩾ 1 and T > 0, define the discretized quadratic variation

Q
(n)
T :=

n∑
k=1

(BkT/n −B(k−1)T/n)
2, n ⩾ 1.

a) Compute E
[
Q

(n)
T

]
, n ⩾ 1.

b) Compute Var[Q(n)
T ], n ⩾ 1.

c) Show that
lim
n→∞

Q
(n)
T = T ,

where the limit is taken in L2(Ω), that is, show that

lim
n→∞

∥Q(n)
T − T∥L2(Ω) = 0,

where ∥∥Q(n)
T − T

∥∥
L2(Ω)

:=
√

E
[(
Q

(n)
T − T

)2], n ⩾ 1.

d) By the result of Question (c), show that the limit

w T
0
BtdBt := lim

n→∞

n∑
k=1

(BkT/n −B(k−1)T/n)B(k−1)T/n

exists in L2(Ω), and compute it.

Hint: Use the identity

(x− y)y =
1
2 (x

2 − y2 − (x− y)2), x, y ∈ R.

e) Consider the modified quadratic variation defined by

Q̃
(n)
T :=

n∑
k=1

(B(k−1/2)T/n −B(k−1)T/n)
2, n ⩾ 1.

Compute the limit limn→∞ Q̃
(n)
T in L2(Ω) by repeating the steps of Ques-

tions (a)-(c).
f) By the result of Question (e), show that the limit

w T
0
Bt ◦ dBt := lim

n→∞

n∑
k=1

(BkT/n −B(k−1)T/n)B(k−1/2)T/n
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exists in L2(Ω), and compute it.

Hint: Use the identities

(x− y)y =
1
2 (x

2 − y2 − (x− y)2),

and
(x− y)x =

1
2 (x

2 − y2 + (x− y)2), x, y ∈ R.

g) More generally, by repeating the steps of Questions (e) and (f), show that
for any α ∈ [0, 1] the limit

w T
0
Bt ◦ dαBt := lim

n→∞

n∑
k=1

(BkT/n −B(k−1)T/n)B(k−α)T/n

exists in L2(Ω), and compute it.
h) Comparison with deterministic calculus. Compute the limit

lim
n→∞

n∑
k=1

(k− α)
T

n

(
k
T

n
− (k− 1)T

n

)
for all values of α in [0, 1].

Exercise 4.24 Let (Bt)t∈R+ be a standard Brownian motion generating the
information flow (Ft)t∈R+ .

a) Let 0 ⩽ t ⩽ T . What is the probability distribution of BT −Bt?
b) From the answer to Exercise A.4-(c), show that

E[(BT )
+ | Ft] =

√
T − t

2π e−(Bt)2/(2(T−t)) +BtΦ
(

Bt√
T − t

)
,

0 ⩽ t ⩽ T , where Φ denotes the standard Gaussian cumulative dis-
tribution function. Hint: Use the time splitting decomposition BT =
BT −Bt +Bt.

c) Let σ > 0, ν ∈ R, and Xt := σBt + νt, t ⩾ 0. Compute eXt by applying
the Itô formula

f(Xt) = f(X0)+
w t

0
us
∂f

∂x
(Xs)dBs+

w t
0
vs
∂f

∂x
(Xs)ds+

1
2
w t

0
u2
s
∂2f

∂x2 (Xs)ds

to f(x) = ex, where Xt is written as Xt = X0 +
w t

0
usdBs +

w t
0
vsds,

t ⩾ 0.
d) Let St = eXt , t ⩾ 0, and r > 0. For which value of ν does (St)t∈R+ satisfy

the stochastic differential equation
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dSt = rStdt+ σStdBt ?

Exercise 4.25 From the answer to Exercise A.4-(c), show that for any β ∈ R

we have

E[(β −BT )
+ | Ft] =

√
T − t

2π e−(β−Bt)2/(2(T−t)) + (β −Bt)Φ
(
β −Bt√
T − t

)
,

0 ⩽ t ⩽ T .

Hint: Use the time splitting decomposition BT = BT −Bt +Bt.
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