Chapter 4

Brownian Motion and Stochastic Calculus

Brownian motion is a continuous-time stochastic process having stationary and independent Gaussian distributed increments, and continuous paths. This chapter presents the constructions of Brownian motion and its associated Itô stochastic integral, which will be used for the random modeling of asset and portfolio prices in continuous time.
4.1 Brownian Motion 149
4.2 Three Constructions of Brownian Motion 153
4.3 Wiener Stochastic Integral 158
4.4 Itô Stochastic Integral 168
4.5 Stochastic Calculus 176
Exercises 190

4.1 Brownian Motion

We start by recalling the definition of Brownian motion, which is a fundamental example of a stochastic process. The underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$ of Brownian motion can be constructed on the space $\Omega=\mathcal{C}_{0}\left(\mathbb{R}_{+}\right)$ of continuous real-valued functions on \mathbb{R}_{+}started at 0 .

Definition 4.1. The standard Brownian motion is a stochastic process $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$such that

1. $B_{0}=0$,
2. The sample trajectories $t \mapsto B_{t}$ are continuous, with probability one.
3. For any finite sequence of times $t_{0}<t_{1}<\cdots<t_{n}$, the increments

$$
B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \ldots, B_{t_{n}}-B_{t_{n-1}}
$$

are mutually independent random variables.
4. For any given times $0 \leqslant s<t, B_{t}-B_{s}$ has the Gaussian distribution $\mathcal{N}(0, t-s)$ with mean zero and variance $t-s$.

In particular, for $t \in \mathbb{R}_{+}$, the random variable $B_{t} \simeq \mathcal{N}(0, t)$ has a Gaussian distribution with mean zero and variance $t>0$. Existence of a stochastic process satisfying the conditions of Definition 4.1 will be covered in Section 4.2, see also Problem 4.22.

In Figure 4.1 we draw three sample paths of a standard Brownian motion obtained by computer simulation using (4.3). Note that there is no point in "computing" the value of B_{t} as it is a random variable for all $t>0$. However, we can generate samples of B_{t}, which are distributed according to the centered Gaussian distribution with variance $t>0$ as in Figure 4.1.

Fig. 4.1: Sample paths of a one-dimensional Brownian motion.

In particular, Property 4 in Definition 4.1 implies

$$
\mathbb{E}\left[B_{t}-B_{s}\right]=0 \quad \text { and } \quad \operatorname{Var}\left[B_{t}-B_{s}\right]=t-s, \quad 0 \leqslant s \leqslant t
$$

and we have

$$
\begin{aligned}
\operatorname{Cov}\left(B_{s}, B_{t}\right) & =\mathbb{E}\left[B_{s} B_{t}\right] \\
& =\mathbb{E}\left[B_{s}\left(B_{t}-B_{s}+B_{s}\right)\right] \\
& =\mathbb{E}\left[B_{s}\left(B_{t}-B_{s}\right)+\left(B_{s}\right)^{2}\right] \\
& =\mathbb{E}\left[B_{s}\left(B_{t}-B_{s}\right)\right]+\mathbb{E}\left[\left(B_{s}\right)^{2}\right] \\
& =\mathbb{E}\left[B_{s}\right] \mathbb{E}\left[B_{t}-B_{s}\right]+\mathbb{E}\left[\left(B_{s}\right)^{2}\right] \\
& =\operatorname{Var}\left[B_{s}\right] \\
& =s, \quad 0 \leqslant s \leqslant t,
\end{aligned}
$$

hence

$$
\begin{equation*}
\operatorname{Cov}\left(B_{s}, B_{t}\right)=\mathbb{E}\left[B_{s} B_{t}\right]=\min (s, t), \quad s, t \geqslant 0 \tag{4.1}
\end{equation*}
$$

cf. also Exercise 4.1. The following graphs present two examples of possible modeling of random data using Brownian motion.

Fig. 4.2: Evolution of the fortune of a poker player vs. number of games played.

How popular is duckduckgo.com?

Alexa Traffic Ranks

How is this site ranked relative to other sites?

Global Rank ?
1,422

Rank in United States ?
国433

Fig. 4.3: Web traffic ranking.

In what follows, we denote by $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$the filtration generated by the Brownian paths up to time t, defined as

$$
\begin{equation*}
\mathcal{F}_{t}:=\sigma\left(B_{s}: 0 \leqslant s \leqslant t\right), \quad t \geqslant 0 . \tag{4.2}
\end{equation*}
$$

Property 3 in Definition 4.1 shows that $B_{t}-B_{s}$ is independent of all Brownian increments taken before time s, i.e.

$$
\left(B_{t}-B_{s}\right) \Perp\left(B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \ldots, B_{t_{n}}-B_{t_{n-1}}\right),
$$

$0 \leqslant t_{0} \leqslant t_{1} \leqslant \cdots \leqslant t_{n} \leqslant s \leqslant t$, hence $B_{t}-B_{s}$ is also independent of the whole Brownian history up to time s, hence $B_{t}-B_{s}$ is in fact independent of $\mathcal{F}_{s}, s \geqslant 0$.

Definition 4.2. A continuous-time process $\left(Z_{t}\right)_{t \in \mathbb{R}_{+}}$of integrable random variables is a martingale under \mathbb{P} and with respect to the filtration $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$ if

$$
\mathbb{E}\left[Z_{t} \mid \mathcal{F}_{s}\right]=Z_{s}, \quad 0 \leqslant s \leqslant t
$$

Note that when $\left(Z_{t}\right)_{t \in \mathbb{R}_{+}}$is a martingale, Z_{t} is in particular \mathcal{F}_{t}-measurable at all times $t \geqslant 0$. As in Example 2 on page 272, we have the following result.

Proposition 4.3. Brownian motion $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$is a continuous-time martingale.

Proof. We have

$$
\begin{aligned}
\mathbb{E}\left[B_{t} \mid \mathcal{F}_{s}\right] & =\mathbb{E}\left[B_{t}-B_{s}+B_{s} \mid \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[B_{t}-B_{s} \mid \mathcal{F}_{s}\right]+\mathbb{E}\left[B_{s} \mid \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[B_{t}-B_{s}\right]+B_{s} \\
& =B_{s}, \quad 0 \leqslant s \leqslant t,
\end{aligned}
$$

because it has centered and independent increments, cf. Section 7.1.
The n-dimensional Brownian motion can be constructed as $\left(B_{t}^{(1)}, B_{t}^{(2)}, \ldots, B_{t}^{(n)}\right)_{t \in \mathbb{R}_{+}}$ where $\left(B_{t}^{(1)}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}^{(2)}\right)_{t \in \mathbb{R}_{+}}, \ldots,\left(B_{t}^{(n)}\right)_{t \in \mathbb{R}_{+}}$are independent copies of $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$. Next, we turn to simulations of 2 dimensional and 3 dimensional Brownian motions in Figures 4.4 and 4.5. Recall that the movement of pollen particles originally observed by Brown (1828) was indeed 2-dimensional.

Fig. 4.4: Two sample paths of a two-dimensional Brownian motion.

Fig. 4.5: Sample path of a three-dimensional Brownian motion.

Figure 4.6 presents an illustration of the scaling property of Brownian motion.

Fig. 4.6: Scaling property of Brownian motion.*

4.2 Three Constructions of Brownian Motion

We refer the reader to Chapter 1 of Revuz and Yor (1994) and to Theorem 10.28 in Folland (1999) for proofs of existence of Brownian motion as a stochastic process $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$satisfying the Conditions 1-4 of Definition 4.1.

Brownian motion as a random walk

We start with an informal description of Brownian motion as a random walk over infinitesimal time intervals of length Δt, whose increments

[^0]$$
\Delta B_{t}:=B_{t+\Delta t}-B_{t} \simeq \mathcal{N}(0, \Delta t)
$$
over the time interval $[t, t+\Delta t]$ will be approximated by the Bernoulli random variable
\[

$$
\begin{equation*}
\Delta B_{t}= \pm \sqrt{\Delta t} \tag{4.3}
\end{equation*}
$$

\]

with equal probabilities $(1 / 2,1 / 2)$. According to this representation, the paths of Brownian motion are not differentiable, although they are continuous by Property 2, as we have

$$
\begin{equation*}
\frac{d B_{t}}{d t} \simeq \pm \frac{\sqrt{d t}}{d t}= \pm \frac{1}{\sqrt{d t}} \simeq \pm \infty \tag{4.4}
\end{equation*}
$$

Figure 4.7 presents a simulation of Brownian motion as a random walk with $\Delta t=0.1$.

Fig. 4.7: Construction of Brownian motion as a random walk with $B_{0}=1$.*

Note that we have

$$
\mathbb{E}\left[\Delta B_{t}\right]=\frac{1}{2} \sqrt{\Delta t}-\frac{1}{2} \sqrt{\Delta t}=0
$$

and

$$
\operatorname{Var}\left[\Delta B_{t}\right]=\mathbb{E}\left[\left(\Delta B_{t}\right)^{2}\right]=\frac{1}{2}(+\sqrt{\Delta t})^{2}+\frac{1}{2}(-\sqrt{\Delta t})^{2}=\frac{1}{2} \Delta t+\frac{1}{2} \Delta t=\Delta t
$$

In order to recover the Gaussian distribution property of the random variable B_{T}, we can split the time interval $[0, T]$ into N subintervals

$$
\left(\frac{k-1}{N} T, \frac{k}{N} T\right], \quad k=1,2, \ldots, N
$$

of same length $\Delta t=T / N$, with N "large".

[^1]

Defining the Bernoulli random variable X_{k} as

$$
X_{k}:= \pm \sqrt{T}
$$

with equal probabilities $(1 / 2,1 / 2)$, we have $\operatorname{Var}\left(X_{k}\right)=T$ and

$$
\Delta B_{t}:=\frac{X_{k}}{\sqrt{N}}= \pm \sqrt{\Delta t}
$$

is the increment of B_{t} over $((k-1) \Delta t, k \Delta t]$, and we get

$$
B_{T} \simeq \sum_{0<t<T} \Delta B_{t} \simeq \frac{X_{1}+X_{2}+\cdots+X_{N}}{\sqrt{N}}
$$

Hence by the central limit theorem we recover the fact that B_{T} has the centered Gaussian distribution $\mathcal{N}(0, T)$ with variance T, cf. point 4 of the above Definition 4.1 of Brownian motion, and the illustration given in Figure 4.8. Indeed, the central limit theorem states that given any sequence $\left(X_{k}\right)_{k \geqslant 1}$ of independent identically distributed centered random variables with variance $\sigma^{2}=\operatorname{Var}\left[X_{k}\right]=T$, the normalized sum

$$
\frac{X_{1}+X_{2}+\cdots+X_{N}}{\sqrt{N}}
$$

converges (in distribution) to the centered Gaussian random variable $\mathcal{N}\left(0, \sigma^{2}\right)$ with variance σ^{2} as N goes to infinity. As a consequence, ΔB_{t} could in fact be replaced by any centered random variable with variance Δt in the above description.

```
N=1000; t <- 0:N; dt <- 1.0/N; dev.new(width=16,height=7); # Using Bernoulli samples
nsim=100;X <- matrix((dt)~0.5*(rbinom(nsim * N, 1, 0.5)-0.5)*2, nsim, N)
X <- cbind(rep(0, nsim), t(apply(X, 1, cumsum))); H<-hist(X[,N],plot=FALSE);
layout(matrix(c(1,2), nrow =1, byrow = TRUE));par(mar=c(2,2,2,0), oma =c(2, 2, 2, 2))
plot(t*dt, X[1, ], xlab = "", ylab = "", type = "l", ylim =c(-2, 2), col = 0,xaxs='i',las=1,
    cex.axis=1.6)
for (i in 1:nsim){lines(t*dt, X[i, ], type = "l", ylim = c(-2, 2), col = i)}
lines(t*dt,sqrt(t*dt),lty=1,col="red",lwd=3);lines(t*dt,-sqrt(t*dt), lty=1, col="red",lwd=3)
lines(t*dt,0*t, lty=1, col="black",lwd=2)
for (i in 1:nsim){points(0.999, X[i,N], pch=1, lwd = 5, col = i)}
x<- seq(-2,2, length=100); px <- dnorm(x);par(mar =c(2,2,2,2))
plot(NULL , xlab="", ylab="", xlim = c(0, max(px,H$density)), ylim = c(-2,2),axes=F)
rect(0,H$breaks[1:(length(H$breaks) - 1)], col=rainbow(20,start=0.08,end=0.6), H$density,
    H$breaks[2:length(H$breaks)]); lines(px,x,lty=1, col="black",lwd=2)
```


Fig. 4.8: Statistics of one-dimensional Brownian paths vs. Gaussian distribution.

Remark 4.4. The choice of the square root in (4.3) is in fact not fortuitous. Indeed, any choice of $\pm(\Delta t)^{\alpha}$ with a power $\alpha>1 / 2$ would lead to explosion of the process as $d t$ tends to zero, whereas a power $\alpha \in(0,1 / 2)$ would lead to a vanishing process, as can be checked from the following \mathbf{R} code.

The following \mathbb{R} code plots a set of 72 normalized yearly return graphs of the S\&P 500 index from 1950 to 2022, together with their distribution, see Figure 4.9, for comparison with the path properties and statistics of Brownian motion.

```
library(quantmod); getSymbols("^GSPC",from="1950-01-01",to="2022-12-31",src="yahoo")
stock<-Cl(`GSPC`); s=0;y=0;j=0;count=0;N=240;nsim=72; X = matrix(0, nsim, N)
for (i in 1:nrow(GSPC)){if (s==0 &&& grepl('-01-0',index(stock[i]))) {if (count==0 || X[y,N]>0)
    {y=y+1;j=1;s=1;count=count+1;}}
if (j<=N) {X[y,j]=as.numeric(stock[i]);};if (grepl('-02-0',index(stock[i]))) {s=0;};j=j+1;}
t<- 0:(N-1); dt <- 1.0/N; m=mean(X[,N]/X[,1]-1); sigma=sd(X[,N]/X[,1]-1);
    dev.new(width=16,height=7);
layout(matrix(c(1,2), nrow =1, byrow = TRUE));par(mar=c(2,2,2,0), oma = c(2, 2, 2, 2))
plot(t*dt, X[1,]/X[1,1]-1-m*t*dt, xlab = "", ylab = "", type = "l", ylim = c(-0.5, 0.5), col = 0,
    xaxs='i',las=1, cex.axis=1.6)
for (i in 1:nsim){lines(t*dt, X[i,]/X[i,1]-1-m*t*dt, type = "l", col = i)}
lines(t*dt,sigma*sqrt(t*dt),lty=1,col="red",lwd=3);lines(t*dt,-sigma*sqrt(t*dt),lty=1,
    col="red",lwd=3)
lines(t*dt,0*t, lty=1, col="black",lwd=2)
for (i in 1:nsim){points(0.999, X[i,N]/X[i,1]-1-m*N*dt, pch=1, lwd = 5, col = i)}
x <- seq(-0.5,0.5, length=100); px <- dnorm(x,0,sigma);
    H<-hist(X[,N]/X[,1]-1-m*N*dt,plot=FALSE);
plot(NULL , xlab="", ylab="", xlim = c(0, max(px,H$density)), ylim = c(-0.5,0.5),axes=F)
rect(0,H$breaks[1:(length(H$breaks) - 1)], col=rainbow(20,start=0.08,end=0.6), H$density,
H$breaks[2:length(H$breaks)]); lines(px,x, lty=1, col="black",lwd=2)
```


Fig. 4.9: Statistics of 72 S\&P 500 yearly normalized return graphs from 1950 to 2022.

Lévy's construction of Brownian motion

Figure 4.10 represents the construction of Brownian motion by successive linear interpolations, see Problem 4.22 for a proof of existence of Brownian motion based on this construction.

Fig. 4.10: Lévy's construction of Brownian motion.*

The following \mathbf{R} code is used to generate Figure 4.10. ${ }^{\dagger}$

[^2]```
dev.new(width=16,height=7); alpha=1/2;t<- 0:1;dt <- 1; z=rnorm(1,mean=0,sd= dt`alpha)
plot(t*dt,c(0,z),xlab = "t",ylab = "",col = "blue",main = "",type = "l", xaxs="i", las = 1)
k=0;while (k<12) {readline("Press <return> to continue")
k=k+1;m <- (z+c(0,head(z,-1)))/2;y <- rnorm(length(t)-1,mean=0,sd=(dt/4))alpha)
x<-m+y;x <- c(matrix(c(x,z), 2, byrow = T));n=2*length(t)-2;t<- 0:n
plot(t*dt/2, c(0, x), xlab = "t", ylab = "", col = "blue", main = "", type = "l", xaxs="i", las =
 1);z=x;dt=dt/2}
```


## Construction by series expansions

Brownian motion on $[0, T]$ can also be constructed by Fourier synthesis via the Paley-Wiener series expansion

$$
B_{t}=\sum_{n \geqslant 1} X_{n} f_{n}(t)=\frac{\sqrt{2 T}}{\pi} \sum_{n \geqslant 1} X_{n} \frac{\sin ((n-1 / 2) \pi t / T)}{n-1 / 2}, \quad 0 \leqslant t \leqslant T
$$

where $\left(X_{n}\right)_{n \geqslant 1}$ is a sequence of independent $\mathcal{N}(0,1)$ standard Gaussian random variables, as illustrated in Figure 4.11.*


Fig. 4.11: Construction of Brownian motion by series expansions. ${ }^{\dagger}$

### 4.3 Wiener Stochastic Integral

In this section, we construct the Wiener stochastic integral of squareintegrable deterministic functions of time with respect to Brownian motion.

Recall that the price $S_{t}$ of risky assets was originally modeled in Bachelier (1900) as $S_{t}:=\sigma B_{t}$, where $\sigma$ is a volatility parameter. The stochastic integral

[^3]$$
\int_{0}^{T} f(t) d S_{t}=\sigma \int_{0}^{T} f(t) d B_{t}
$$
can be used to represent the value of a portfolio as a sum of profits and losses $f(t) d S_{t}$ where $d S_{t}$ represents the stock price variation and $f(t)$ is the quantity invested in the asset $S_{t}$ over the short time interval $[t, t+d t]$.

A naive definition of the stochastic integral with respect to Brownian motion would consist in letting

$$
\int_{0}^{T} f(t) d B_{t}:=\int_{0}^{T} f(t) \frac{d B_{t}}{d t} d t
$$

and evaluating the above integral with respect to $d t$. However, this definition fails because the paths of Brownian motion are not differentiable, cf. (4.4). Next we present Itô's construction of the stochastic integral with respect to Brownian motion. Stochastic integrals will be first constructed as integrals of simple step functions of the form

$$
\begin{equation*}
f(t)=\sum_{i=1}^{n} a_{i} \mathbb{1}_{\left(t_{i-1}, t_{i}\right]}(t), \quad 0 \leqslant t \leqslant T \tag{4.5}
\end{equation*}
$$

i.e. the function $f$ takes the value $a_{i}$ on the interval $\left(t_{i-1}, t_{i}\right], i=1,2, \ldots, n$, with $0 \leqslant t_{0}<\cdots<t_{n} \leqslant T$, as illustrated in Figure 4.12.


Fig. 4.12: Step function $t \mapsto f(t)$.

```
ti<-c(0,2,4.5,7,9)
ai<-c(0,3,1,2,1,0)
plot(stepfun(ti,ai),xlim = c(0,10),do.points = F,main="", col = "blue")
```

Recall that the classical integral of $f$ given in (4.5) is interpreted as the area under the curve represented by $f$, and computed as

$$
\int_{0}^{T} f(t) d t=\sum_{i=1}^{n} a_{i}\left(t_{i}-t_{i-1}\right)
$$



Fig. 4.13: Area under the step function $t \mapsto f(t)$.
In Definition 4.5 we use such step functions for the construction of the stochastic integral with respect to Brownian motion. The stochastic integral (4.6) for step functions will be interpreted as the sum of profits and losses $a_{i}\left(B_{t_{i}}-B_{t_{i-1}}\right), i=1,2, \ldots, n$, in a portfolio holding a quantity $a_{i}$ of a risky asset whose price variation is $B_{t_{i}}-B_{t_{i-1}}$ at time $i=1,2, \ldots, n$.
Definition 4.5. The stochastic integral with respect to Brownian motion $\left(B_{t}\right)_{t \in[0, T]}$ of the simple step function $f$ of the form (4.5) is defined by

$$
\begin{equation*}
\int_{0}^{T} f(t) d B_{t}:=\sum_{i=1}^{n} a_{i}\left(B_{t_{i}}-B_{t_{i-1}}\right) \tag{4.6}
\end{equation*}
$$

In what follows, we will make a repeated use of the space $L^{2}([0, T])$ of squareintegrable functions.
Definition 4.6. Let $L^{2}([0, T])$ denote the space of (measurable) functions $f:[0, T] \longrightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\|f\|_{L^{2}([0, T])}:=\sqrt{\int_{0}^{T}|f(t)|^{2} d t}<\infty, \quad f \in L^{2}([0, T]) \tag{4.7}
\end{equation*}
$$

In the above definition, $\|f\|_{L^{2}([0, T])}$ represents the norm of the function $f \in$ $L^{2}([0, T])$.

For example, the function $f(t):=t^{\alpha}, t \in(0, T]$, belongs to $L^{2}([0, T])$ if and only if $\alpha>-1 / 2$, as we have

$$
\int_{0}^{T} f^{2}(t) d t=\int_{0}^{T} t^{2 \alpha} d t= \begin{cases}+\infty & \text { if } \alpha \leqslant-1 / 2 \\ {\left[\frac{t^{1+2 \alpha}}{1+2 \alpha}\right]_{t=0}^{t=T}=\frac{T^{1+2 \alpha}}{1+2 \alpha}<\infty} & \text { if } \alpha>-1 / 2\end{cases}
$$

see Figure 4.14 for an illustration.


Fig. 4.14: Infinite $v s$. finite area under the curve $t \mapsto t^{2 \alpha}$.
In Lemma 4.7 we determine the probability distribution of $\int_{0}^{T} f(t) d B_{t}$ and we show that it is independent of the particular representation (4.5) chosen for $f(t)$.

Lemma 4.7. Let $f$ be a simple step function $f$ of the form (4.5). The stochastic integral $\int_{0}^{T} f(t) d B_{t}$ defined in (4.6) has the centered Gaussian distribution

$$
\int_{0}^{T} f(t) d B_{t} \simeq \mathcal{N}\left(0, \int_{0}^{T}|f(t)|^{2} d t\right)
$$

with mean $\mathbb{E}\left[\int_{0}^{T} f(t) d B_{t}\right]=0$ and variance given by the Itô isometry

$$
\begin{equation*}
\operatorname{Var}\left[\int_{0}^{T} f(t) d B_{t}\right]=\mathbb{E}\left[\left(\int_{0}^{T} f(t) d B_{t}\right)^{2}\right]=\int_{0}^{T}|f(t)|^{2} d t \tag{4.8}
\end{equation*}
$$

Proof. Recall that if $X_{1}, X_{2}, \ldots, X_{n}$ are independent Gaussian random variables with probability distributions $\mathcal{N}\left(m_{1}, \sigma_{1}^{2}\right), \ldots, \mathcal{N}\left(m_{n}, \sigma_{n}^{2}\right)$, then the sum $X_{1}+\cdots+X_{n}$ is a Gaussian random variable with distribution

$$
\mathcal{N}\left(m_{1}+\cdots+m_{n}, \sigma_{1}^{2}+\cdots+\sigma_{n}^{2}\right)
$$

As a consequence, the stochastic integral

$$
\int_{0}^{T} f(t) d B_{t}=\sum_{k=1}^{n} a_{k}\left(B_{t_{k}}-B_{t_{k-1}}\right)
$$

of the step function

$$
f(t)=\sum_{k=1}^{n} a_{k} \mathbb{1}_{\left(t_{k-1}, t_{k}\right]}(t), \quad 0 \leqslant t \leqslant T
$$

has the centered Gaussian distribution with mean 0 and variance

$$
\begin{aligned}
\operatorname{Var}\left[\int_{0}^{T} f(t) d B_{t}\right] & =\operatorname{Var}\left[\sum_{k=1}^{n} a_{k}\left(B_{t_{k}}-B_{t_{k-1}}\right)\right] \\
& =\sum_{k=1}^{n} \operatorname{Var}\left[a_{k}\left(B_{t_{k}}-B_{t_{k-1}}\right)\right] \\
& =\sum_{k=1}^{n}\left|a_{k}\right|^{2} \operatorname{Var}\left[B_{t_{k}}-B_{t_{k-1}}\right] \\
& =\sum_{k=1}^{n}\left(t_{k}-t_{k-1}\right)\left|a_{k}\right|^{2} \\
& =\sum_{k=1}^{n}\left|a_{k}\right|^{2} \int_{t_{k-1}}^{t_{k}} d t \\
& =\sum_{k=1}^{n}\left|a_{k}\right|^{2} \int_{0}^{T} \mathbb{1}_{\left(t_{k-1}, t_{k}\right]}(t) d t \\
& =\int_{0}^{T} \sum_{k=1}^{n}\left|a_{k}\right|^{2} \mathbb{1}_{\left(t_{k-1}, t_{k}\right]}(t) d t \\
& =\int_{0}^{T}|f(t)|^{2} d t
\end{aligned}
$$

since the simple function

$$
f^{2}(t)=\sum_{i=1}^{n} a_{i}^{2} \mathbb{1}_{\left(t_{i-1}, t_{i}\right]}(t), \quad 0 \leqslant t \leqslant T
$$

takes the value $a_{i}^{2}$ on the interval $\left(t_{i-1}, t_{i}\right], i=1,2, \ldots, n$, as can be checked from the following Figure 4.15.


Fig. 4.15: Squared step function $t \mapsto f^{2}(t)$.

The norm $\|\cdot\|_{L^{2}([0, T])}$ on $L^{2}([0, T])$ induces a distance between any two functions $f$ and $g$ in $L^{2}([0, T])$, defined as

$$
\|f-g\|_{L^{2}([0, T])}:=\sqrt{\int_{0}^{T}|f(t)-g(t)|^{2} d t}<\infty
$$

cf. e.g. Chapter 3 of Rudin (1974) for details.
Definition 4.8. Convergence in $L^{2}([0, T])$. We say that a sequence $\left(f_{n}\right)_{n \geqslant 0}$ of functions in $L^{2}([0, T])$ converges in $L^{2}([0, T])$ to another function $f \in$ $L^{2}([0, T])$ if

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{L^{2}([0, T])}=\lim _{n \rightarrow \infty} \sqrt{\int_{0}^{T}\left|f(t)-f_{n}(t)\right|^{2} d t}=0
$$

```
dev.new(width=16,height=7)
f}=\mathrm{ function(x){exp(sin}(\textrm{x}*1.8*pi))
for (i in 3:9){n=2^i;x<-cumsum(c(0,rep(1,n)))/n;
z<-c(NA,head(x,-1))
y<-c(f(x)-pmax(f(x)-f(z),0),f(1))
t=seq(0,1,0.01);
plot(f,from=0,to=1,ylim=c(0.3,2.9),type="l",lwd=3,col="red",main=" ",xaxs="i",yaxs="i",
 las=1)
lines(stepfun(x,y),do.points=F,lwd=2,col="blue",main="");
readline("Press <return> to continue");}
```



Fig. 4.16: Step function approximation.*

By e.g. Theorem 3.13 in Rudin (1974) or Proposition 2.4 page 63 of Hirsch and Lacombe (1999), we have the following result which states that the set of simple step functions $f$ of the form (4.5) is a linear space which is dense in $L^{2}([0, T])$ for the norm (4.7), as stated in the next proposition.

Proposition 4.9. For any function $f \in L^{2}([0, T])$ satisfying (4.7), there exists a sequence $\left(f_{n}\right)_{n \geqslant 0}$ of simple step functions of the form (4.5), converging to $f$ in $L^{2}([0, T])$ in the sense that

[^4]$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{L^{2}([0, T])}=\lim _{n \rightarrow \infty} \sqrt{\int_{0}^{T}\left|f(t)-f_{n}(t)\right|^{2} d t}=0
$$

In order to extend the definition (4.6) of the stochastic integral $\int_{0}^{T} f(t) d B_{t}$ to any function $f \in L^{2}([0, T])$, i.e. to $f:[0, T] \longrightarrow \mathbb{R}$ measurable such that

$$
\begin{equation*}
\int_{0}^{T}|f(t)|^{2} d t<\infty \tag{4.9}
\end{equation*}
$$

we will make use of the space $L^{2}(\Omega)$ of square-integrable random variables.
Definition 4.10. Let $L^{2}(\Omega)$ denote the space of random variables $F: \Omega \longrightarrow$ $\mathbb{R}$ such that

$$
\|F\|_{L^{2}(\Omega)}:=\sqrt{\mathbb{E}\left[F^{2}\right]}<\infty
$$

The norm $\|\cdot\|_{L^{2}(\Omega)}$ on $L^{2}(\Omega)$ induces the distance

$$
\|F-G\|_{L^{2}(\Omega)}:=\sqrt{\mathbb{E}\left[(F-G)^{2}\right]}<\infty
$$

between the square-integrable random variables $F$ and $G$ in $L^{2}(\Omega)$.
Definition 4.11. Convergence in $L^{2}(\Omega)$. We say that a sequence $\left(F_{n}\right)_{n \geqslant 0}$ of random variables in $L^{2}(\Omega)$ converges in $L^{2}(\Omega)$ to another random variable $F \in L^{2}(\Omega)$ if

$$
\lim _{n \rightarrow \infty}\left\|F-F_{n}\right\|_{L^{2}(\Omega)}=\lim _{n \rightarrow \infty} \sqrt{\mathbb{E}\left[\left(F-F_{n}\right)^{2}\right]}=0
$$

The next proposition allows us to extend Lemma 4.7 from simple step functions to square-integrable functions in $L^{2}([0, T])$.
Proposition 4.12. The definition (4.6) of the stochastic integral $\int_{0}^{T} f(t) d B_{t}$ can be extended to any function $f \in L^{2}([0, T])$. In this case, $\int_{0}^{T} f(t) d B_{t}$ has the centered Gaussian distribution

$$
\int_{0}^{T} f(t) d B_{t} \simeq \mathcal{N}\left(0, \int_{0}^{T}|f(t)|^{2} d t\right)
$$

with mean $\mathbb{E}\left[\int_{0}^{T} f(t) d B_{t}\right]=0$ and variance given by the Itô isometry

$$
\begin{equation*}
\operatorname{Var}\left[\int_{0}^{T} f(t) d B_{t}\right]=\mathbb{E}\left[\left(\int_{0}^{T} f(t) d B_{t}\right)^{2}\right]=\int_{0}^{T}|f(t)|^{2} d t \tag{4.10}
\end{equation*}
$$

Proof. The extension of the stochastic integral to all functions satisfying (4.9) is obtained by a denseness and Cauchy* sequence argument, based on the isometry relation (4.10).
i) Given $f$ a function satisfying (4.9), consider a sequence $\left(f_{n}\right)_{n \geqslant 0}$ of simple functions converging to $f$ in $L^{2}([0, T])$, i.e.

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{L^{2}([0, T])}=\lim _{n \rightarrow \infty} \sqrt{\int_{0}^{T}\left|f(t)-f_{n}(t)\right|^{2} d t}=0
$$

as in Proposition 4.9.
ii) By the isometry relation (4.8) or (4.10) and the triangle inequality ${ }^{\dagger}$ we have

$$
\begin{aligned}
& \left\|\int_{0}^{T} f_{k}(t) d B_{t}-\int_{0}^{T} f_{n}(t) d B_{t}\right\|_{L^{2}(\Omega)} \\
& \quad=\sqrt{\mathbb{E}\left[\left(\int_{0}^{T} f_{k}(t) d B_{t}-\int_{0}^{T} f_{n}(t) d B_{t}\right)^{2}\right]} \\
& \quad=\sqrt{\mathbb{E}\left[\left(\int_{0}^{T}\left(f_{k}(t)-f_{n}(t)\right) d B_{t}\right)^{2}\right]} \\
& \quad=\sqrt{\int_{0}^{T}\left|f_{k}(t)-f_{n}(t)\right|^{2} d t} \\
& \quad=\left\|f_{k}-f_{n}\right\|_{L^{2}([0, T])} \\
& \quad \leqslant\left\|f_{k}-f\right\|_{L^{2}([0, T])}+\left\|f-f_{n}\right\|_{L^{2}([0, T])},
\end{aligned}
$$

which tends to 0 as $k$ and $n$ tend to infinity, hence $\left(\int_{0}^{T} f_{n}(t) d B_{t}\right)_{n \geqslant 0}$ is a Cauchy sequence in $L^{2}(\Omega)$ for the $L^{2}(\Omega)$-norm.
iii) Since the sequence $\left(\int_{0}^{T} f_{n}(t) d B_{t}\right)_{n \geqslant 0}$ is Cauchy and the space $L^{2}(\Omega)$ is complete, cf. e.g. Theorem 3.11 in Rudin (1974) or Chapter 4 of Dudley (2002), we conclude that $\left(\int_{0}^{T} f_{n}(t) d B_{t}\right)_{n \geqslant 0}$ converges for the $L^{2}$-norm to a limit in $L^{2}(\Omega)$. In this case we let

$$
\int_{0}^{T} f(t) d B_{t}:=\lim _{n \rightarrow \infty} \int_{0}^{T} f_{n}(t) d B_{t}
$$

which also satisfies (4.10) from (4.8). From (4.10) we can check that the limit is independent of the approximating sequence $\left(f_{n}\right)_{n \geqslant 0}$.

[^5]iv) Finally, from the convergence of Gaussian characteristic functions and a dominated convergence argument, we have
\[

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(i \alpha \int_{0}^{T} f(t) d B_{t}\right)\right] & =\mathbb{E}\left[\lim _{n \rightarrow \infty} \exp \left(i \alpha \int_{0}^{T} f_{n}(t) d B_{t}\right)\right] \\
& =\lim _{n \rightarrow \infty} \mathbb{E}\left[\exp \left(i \alpha \int_{0}^{T} f_{n}(t) d B_{t}\right)\right] \\
& =\lim _{n \rightarrow \infty} \exp \left(-\frac{\alpha^{2}}{2} \int_{0}^{T}\left|f_{n}(t)\right|^{2} d t\right) \\
& =\exp \left(-\frac{\alpha^{2}}{2} \int_{0}^{T}|f(t)|^{2} d t\right)
\end{aligned}
$$
\]

$f \in L^{2}([0, T]), \alpha \in \mathbb{R}$, we check that $\int_{0}^{T} f(t) d B_{t}$ has the centered Gaussian distribution

$$
\int_{0}^{T} f(t) d B_{t} \simeq \mathcal{N}\left(0, \int_{0}^{T}|f(t)|^{2} d t\right)
$$

see Theorem A.13.

The next corollary is obtained by bilinearity from the Itô isometry (4.10).
Corollary 4.13. The stochastic integral with respect to Brownian motion $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$satisfies the isometry

$$
\mathbb{E}\left[\int_{0}^{T} f(t) d B_{t} \int_{0}^{T} g(t) d B_{t}\right]=\int_{0}^{T} f(t) g(t) d t
$$

for all square-integrable deterministic functions $f, g \in L^{2}([0, T])$.
Proof. Applying the Itô isometry (4.10) to the processes $f+g$ and $f-g$ and the relation $x y=(x+y)^{2} / 4-(x-y)^{2} / 4$, we have

$$
\begin{aligned}
& \mathbb{E}\left[\int_{0}^{T} f(t) d B_{t} \int_{0}^{T} g(t) d B_{t}\right] \\
& =\frac{1}{4} \mathbb{E}\left[\left(\int_{0}^{T} f(t) d B_{t}+\int_{0}^{T} g(t) d B_{t}\right)^{2}-\left(\int_{0}^{T} f(t) d B_{t}-\int_{0}^{T} g(t) d B_{t}\right)^{2}\right] \\
& =\frac{1}{4} \mathbb{E}\left[\left(\int_{0}^{T}(f(t)+g(t)) d B_{t}\right)^{2}\right]-\frac{1}{4} \mathbb{E}\left[\left(\int_{0}^{T}(f(t)-g(t)) d B_{t}\right)^{2}\right] \\
& =\frac{1}{4} \int_{0}^{T}(f(t)+g(t))^{2} d t-\frac{1}{4} \int_{0}^{T}(f(t)-g(t))^{2} d t \\
& =\frac{1}{4} \int_{0}^{T}\left((f(t)+g(t))^{2}-(f(t)-g(t))^{2}\right) d t
\end{aligned}
$$

$$
=\int_{0}^{T} f(t) g(t) d t
$$

For example, the Wiener stochastic integral $\int_{0}^{T} \mathrm{e}^{-t} d B_{t}$ is a random variable having centered Gaussian distribution with variance

$$
\begin{aligned}
\mathbb{E}\left[\left(\int_{0}^{T} \mathrm{e}^{-t} d B_{t}\right)^{2}\right] & =\int_{0}^{T} \mathrm{e}^{-2 t} d t \\
& =\left[-\frac{1}{2} \mathrm{e}^{-2 t}\right]_{t=0}^{t=T} \\
& =\frac{1}{2}\left(1-\mathrm{e}^{-2 T}\right)
\end{aligned}
$$

as follows from the Itô isometry (4.8).

Remark 4.14. The Wiener stochastic integral $\int_{0}^{T} f(s) d B_{s}$ is a Gaussian random variable that cannot be "computed" in the way standard integrals are computed via the use of primitives. However, when $f \in L^{2}([0, T])$ is in $\mathcal{C}^{1}([0, T])$, ${ }^{*}$ we have the integration by parts relation

$$
\begin{equation*}
\int_{0}^{T} f(t) d B_{t}=f(T) B_{T}-\int_{0}^{T} B_{t} d f(t)=f(T) B_{T}-\int_{0}^{T} B_{t} f^{\prime}(t) d t \tag{4.11}
\end{equation*}
$$

When $f \in L^{2}\left(\mathbb{R}_{+}\right)$is in $\mathcal{C}^{1}\left(\mathbb{R}_{+}\right)$we also have following formula

$$
\begin{equation*}
\int_{0}^{\infty} f(t) d B_{t}=-\int_{0}^{\infty} B_{t} f^{\prime}(t) d t \tag{4.12}
\end{equation*}
$$

provided that $\lim _{t \rightarrow \infty} t|f(t)|^{2}=0$ and $f \in L^{2}\left(\mathbb{R}_{+}\right)$, cf. e.g. Exercise 4.5 and Remark 2.5.9 in Privault (2009).

For example, applying Relation (4.11) to the function $f(t)=t$ shows that

$$
\int_{0}^{T} t d B_{t}=T B_{T}-\int_{0}^{T} B_{t} d t=T \int_{0}^{T} d B_{t}-\int_{0}^{T} B_{t} d t
$$

hence

$$
\int_{0}^{T}(T-t) d B_{t}=\int_{0}^{T} B_{t} d t .
$$

[^6]
## N. Privault

### 4.4 Itô Stochastic Integral

In this section we extend the Wiener stochastic integral from deterministic functions in $L^{2}([0, T])$ to random square-integrable (random) adapted processes. For this, we will need the notion of measurability.

The extension of the stochastic integral to adapted random processes is actually necessary in order to compute a portfolio value when the portfolio process is no longer deterministic. This happens in particular when one needs to update the portfolio allocation based on random events occurring on the market.

A random variable $F$ is said to be $\mathcal{F}_{t}$-measurable if the knowledge of $F$ depends only on the information known up to time $t$. As an example, if $t=$ today,

- the date of the past course exam is $\mathcal{F}_{t}$-measurable, because it belongs to the past.
- the date of the upcoming course exam, although it refers to a future event, is also $\mathcal{F}_{t}$-measurable because it is known at time $t$.
- the date of the next typhoon is not $\mathcal{F}_{t}$-measurable since it is not known at time $t$.
- the maturity date $T$ of the European option is $\mathcal{F}_{t}$-measurable for all $t \in[0, T]$, because it has been determined at time 0 .
- the exercise date $\tau$ of an American option after time $t$ (see Section 15.1) is not $\mathcal{F}_{t}$-measurable because it refers to a future random event.

In Definition 4.15, $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ denotes the information flow defined in (4.2), i.e.

$$
\mathcal{F}_{t}:=\sigma\left(B_{s}: 0 \leqslant s \leqslant t\right), \quad t \geqslant 0 .
$$

Definition 4.15. A stochastic process $\left(X_{t}\right)_{t \in[0, T]}$ is said to be $\left(\mathcal{F}_{t}\right)_{t \in[0, T]^{-}}$ adapted if $X_{t}$ is $\mathcal{F}_{t}$-measurable for all $t \in[0, T]$.

For example,

- $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$is an $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$-adapted process,
- $\left(B_{t+1}\right)_{t \in \mathbb{R}_{+}}$is not an $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$-adapted process,
- $\left(B_{t / 2}\right)_{t \in \mathbb{R}_{+}}$is an $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$-adapted process,
- $\left(B_{\sqrt{t}}\right)_{t \in[0,1]}$ is not an $\left(\mathcal{F}_{t}\right)_{t \in[0,1]}$-adapted process,
- $\left(B_{\sqrt{t}}\right)_{t \in[1, \infty)}$ is an $\left(\mathcal{F}_{t}\right)_{t \in[1, \infty)}$-adapted process,
- $\left(\operatorname{Max}_{s \in[0, t]} B_{s}\right)_{t \in \mathbb{R}_{+}}$is an $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$-adapted process,
- $\left(\int_{0}^{t} B_{s} d s\right)_{t \in \mathbb{R}_{+}}$is an $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$-adapted process,
$-\left(\int_{0}^{t} f(s) d B_{s}\right)_{t \in[0, T]}$ is an $\left(\mathcal{F}_{t}\right)_{t \in[0, T]^{-}}$adapted process when $f \in L^{2}([0, T])$.
In other words, a stochastic process $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$is $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$-adapted if the value of $X_{t}$ at time $t$ depends only on information known up to time $t$. Note that the value of $X_{t}$ may still depend on "known" future data, for example a fixed future date in the calendar, such as a maturity time $T>t$, as long as its value is known at time $t$.

The next Figure 4.17 shows an adapted portfolio strategy on two assets, constructed from a sign-switching signal based on spread data, see § 2.5 in Privault (2021a) and this $\boldsymbol{R}$ code.


Fig. 4.17: Adapted pair trading portfolio strategy.

The stochastic integral of adapted processes is first constructed as integrals of simple predictable processes.

Definition 4.16. A simple predictable processes is a stochastic process $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$of the form

$$
\begin{equation*}
u_{t}:=\sum_{i=1}^{n} F_{i} \mathbb{1}_{\left(t_{i-1}, t_{i}\right]}(t), \quad t \geqslant 0 \tag{4.13}
\end{equation*}
$$

where $F_{i}$ is an $\mathcal{F}_{t_{i-1}}$-measurable random variable for $i=1,2, \ldots, n$, and $0=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=T$.

The notion of simple predictable process makes full sense in the context of portfolio investment, in which $F_{i}$ will represent an investment allocation decided at time $t_{i-1}$ and to remain unchanged over the time interval $\left(t_{i-1}, t_{i}\right]$.

By convention, $u: \Omega \times \mathbb{R}_{+} \longrightarrow \mathbb{R}$ is denoted in what follows by $u_{t}(\omega)$, $t \in \mathbb{R}_{+}, \omega \in \Omega$, and the random outcome $\omega$ is often dropped for convenience of notation.

Definition 4.17. The stochastic integral with respect to Brownian motion $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$of any simple predictable process $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$of the form (4.13) is defined by

$$
\begin{equation*}
\int_{0}^{T} u_{t} d B_{t}:=\sum_{i=1}^{n}\left(B_{t_{i}}-B_{t_{i-1}}\right) F_{i} \tag{4.14}
\end{equation*}
$$

with $0=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=T$.
The use of predictability in the definition (4.14) is essential from a financial point of view, as $F_{i}$ will represent a portfolio allocation made at time $t_{i-1}$ and kept constant over the trading interval $\left[t_{i-1}, t_{i}\right]$, while $B_{t_{i}}-B_{t_{i-1}}$ represents a change in the underlying asset price over $\left[t_{i-1}, t_{i}\right]$. See also the related discussion on self-financing portfolios in Section 5.3 and Lemma 5.14 on the use of stochastic integrals to represent the value of a portfolio.
Definition 4.18. Let $L^{2}(\Omega \times[0, T])$ denote the space of stochastic processes

$$
\begin{aligned}
u: \Omega \times[0, T] & \longrightarrow \mathbb{R} \\
(\omega, t) & \longmapsto u_{t}(\omega)
\end{aligned}
$$

such that

$$
\|u\|_{L^{2}(\Omega \times[0, T])}:=\sqrt{\mathbb{E}\left[\int_{0}^{T}\left|u_{t}\right|^{2} d t\right]}<\infty, \quad u \in L^{2}(\Omega \times[0, T])
$$

The norm $\|\cdot\|_{L^{2}(\Omega \times[0, T])}$ on $L^{2}(\Omega \times[0, T])$ induces a distance between two stochastic processes $u$ and $v$ in $L^{2}(\Omega \times[0, T])$, defined as

$$
\|u-v\|_{L^{2}(\Omega \times[0, T])}=\sqrt{\mathbb{E}\left[\int_{0}^{T}\left|u_{t}-v_{t}\right|^{2} d t\right]}
$$

Definition 4.19. Convergence in $L^{2}(\Omega \times[0, T])$. We say that a sequence $\left(u^{(n)}\right)_{n \geqslant 0}$ of processes in $L^{2}(\Omega \times[0, T])$ converges in $L^{2}(\Omega \times[0, T])$ to another process $u \in L^{2}(\Omega \times[0, T])$ if

$$
\lim _{n \rightarrow \infty}\left\|u-u^{(n)}\right\|_{L^{2}(\Omega \times[0, T])}=\lim _{n \rightarrow \infty} \sqrt{\mathbb{E}\left[\int_{0}^{T}\left|u_{t}-u_{t}^{(n)}\right|^{2} d t\right]}=0
$$

By Lemma 1.1 of Ikeda and Watanabe (1989), pages 22 and 46, or Proposition 2.5.3 in Privault (2009), the set of simple predictable processes forms a linear space which is dense in the subspace $L_{\mathrm{ad}}^{2}\left(\Omega \times \mathbb{R}_{+}\right)$made of square-
integrable adapted processes in $L^{2}\left(\Omega \times \mathbb{R}_{+}\right)$, as stated in the next proposition.

Proposition 4.20. Given $u \in L_{\mathrm{ad}}^{2}\left(\Omega \times \mathbb{R}_{+}\right)$a square-integrable adapted process there exists a sequence $\left(u^{(n)}\right)_{n \geqslant 0}$ of simple predictable processes converging to $u$ in $L^{2}\left(\Omega \times \mathbb{R}_{+}\right)$, i.e.

$$
\lim _{n \rightarrow \infty}\left\|u-u^{(n)}\right\|_{L^{2}(\Omega \times[0, T])}=\lim _{n \rightarrow \infty} \sqrt{\mathbb{E}\left[\int_{0}^{T}\left|u_{t}-u_{t}^{(n)}\right|^{2} d t\right]}=0
$$

For example, a natural approximation of $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$by a simple predictable process can be constructed as

$$
\begin{equation*}
u_{t}=\sum_{i=1}^{n} F_{i} \mathbb{1}_{\left(t_{i-1}, t_{i}\right]}(t):=\sum_{i=1}^{n} B_{t_{i-1}} \mathbb{1}_{\left(t_{i-1}, t_{i}\right]}(t), \quad t \geqslant 0 \tag{4.15}
\end{equation*}
$$

where $F_{i}:=B_{t_{i-1}}$ is $\mathcal{F}_{t_{i-1}}$-measurable for $i=1,2, \ldots, n$, as in Figure 4.18.

```
N=10000; t <- 0:(N-1); dt <- 1.0/N;
dB <- rnorm(N,mean=0,sd=sqrt(dt));X <- rep(0,N);X[1]=0
for (j in 2:N) {X[j]=X[j-1]+dB[j]}; for (j in 1:10) {m=2**j;
plot(t/(N-1), X, xlab = "t", ylab = "", type = "l", ylim = c(1.05*min(X),1.05*max(X)),
 xaxs="i", yaxs="i", col = "blue", las = 1, cex.axis=1.6, cex.lab=1.8)
abline(h=0); t1=seq(1.0/m,1,1.0/m); Bt=c(0)
for (i in 1:m) {Bt=c(Bt,X[t1[i]*N])}
lines(stepfun(t1,Bt),xlim =c(0,T),xlab="t",ylab=expression('N'[t]),pch=1,cex=0.8, col='black',
 lwd=2, main=""); Sys.sleep(1)}
```


$K \ll \Delta \gg 1-\rightarrow+$

Fig. 4.18: Step function approximation of Brownian motion.*
The next Proposition 4.21 extends the construction of the stochastic integral from simple predictable processes to square-integrable $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$-adapted processes $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$for which the value of $u_{t}$ at time $t$ can only depend on information contained in the Brownian path up to time $t$.

[^7]This restriction means that the Itô integrand $u_{t}$ cannot depend on future information, for example a portfolio strategy that would allow the trader to "buy at the lowest" and "sell at the highest" is excluded as it would require knowledge of future market data. Note that the difference between Relation (4.16) below and Relation (4.10) is the presence of an expectation on the right-hand side.

Proposition 4.21. The stochastic integral with respect to Brownian motion $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$extends to all adapted processes $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$such that

$$
\|u\|_{L^{2}(\Omega \times[0, T])}^{2}:=\mathbb{E}\left[\int_{0}^{T}\left|u_{t}\right|^{2} d t\right]<\infty
$$

with the Ito isometry
$\operatorname{Var}\left[\int_{0}^{T} u_{t} d B_{t}\right]=\mathbb{E}\left[\left(\int_{0}^{T} u_{t} d B_{t}\right)^{2}\right]=\left\|\int_{0}^{T} u_{t} d B_{t}\right\|_{L^{2}(\Omega)}^{2}=\mathbb{E}\left[\int_{0}^{T}\left|u_{t}\right|^{2} d t\right]$.
In addition, the Itô integral of an adapted process $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$is always a centered random variable:

$$
\begin{equation*}
\mathbb{E}\left[\int_{0}^{T} u_{t} d B_{t}\right]=0 \tag{4.17}
\end{equation*}
$$

Proof. We start by showing that the Itô isometry (4.16) holds for the simple predictable process $u$ of the form (4.13). We have

$$
\left.\left.\begin{array}{l}
\mathbb{E}\left[\left(\int_{0}^{T} u_{t} d B_{t}\right)^{2}\right]=\mathbb{E}\left[\left(\sum_{i=1}^{n}\left(B_{t_{i}}-B_{t_{i-1}}\right) F_{i}\right)^{2}\right] \\
= \\
=\mathbb{E}\left[\left(\sum_{i=1}^{n}\left(B_{t_{i}}-B_{t_{i-1}}\right) F_{i}\right)\left(\sum_{j=1}^{n}\left(B_{t_{j}}-B_{t_{j-1}}\right) F_{j}\right)\right] \\
= \\
=\mathbb{E}\left[\sum_{i, j=1}^{n}\left(B_{t_{i}}-B_{t_{i-1}}\right)\left(B_{t_{j}}-B_{t_{j-1}}\right) F_{i} F_{j}\right] \\
= \\
\quad+2 \mathbb{E}\left[\sum_{i=1}^{n}\left|F_{i}\right|^{2}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}\right] \\
1 \leqslant i<j \leqslant n \\
=
\end{array} \sum_{i=1}^{n} \mathbb{E}\left[\mid F_{t_{i}}-B_{t_{i-1}}^{2}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}\right]\left(B_{t_{j}}-B_{t_{j-1}}\right) F_{i} F_{j}\right]\right] .
$$

$$
\begin{aligned}
& +2 \sum_{1 \leqslant i<j \leqslant n} \mathbb{E}\left[\left(B_{t_{i}}-B_{t_{i-1}}\right)\left(B_{t_{j}}-B_{t_{j-1}}\right) F_{i} F_{j}\right] \\
= & \sum_{i=1}^{n} \mathbb{E}\left[\mathbb{E}\left[\left|F_{i}\right|^{2}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2} \mid \mathcal{F}_{t_{i-1}}\right]\right] \\
& +2 \sum_{1 \leqslant i<j \leqslant n} \mathbb{E}\left[\mathbb{E}\left[\left(B_{t_{i}}-B_{t_{i-1}}\right)\left(B_{t_{j}}-B_{t_{j-1}}\right) F_{i} F_{j} \mid \mathcal{F}_{t_{j-1}}\right]\right] \\
= & \sum_{i=1}^{n} \mathbb{E}\left[\left|F_{i}\right|^{2} \mathbb{E}\left[\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2} \mid \mathcal{F}_{t_{i-1}}\right]\right] \\
& +2 \sum_{1 \leqslant i<j \leqslant n} \mathbb{E}[\left(B_{t_{i}}-B_{t_{i-1}}\right) F_{i} F_{j} \underbrace{\mathbb{E}\left[B_{t_{j}}-B_{t_{j-1}} \mid \mathcal{F}_{t_{j-1}}\right]}_{=0}] \\
= & \sum_{i=1}^{n} \mathbb{E}\left[\left|F_{i}\right|^{2} \mathbb{E}\left[\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}\right]\right] \\
& +2 \sum_{1 \leqslant i<j \leqslant n} \mathbb{E}[\left(B_{t_{i}}-B_{t_{i-1}}\right) F_{i} F_{j} \underbrace{\mathbb{E}\left[B_{t_{j}}-B_{t_{j-1}}\right]}_{=0}] \\
= & \sum_{i=1}^{n} \mathbb{E}\left[\left|F_{i}\right|^{2}\left(t_{i}-t_{i-1}\right)\right] \\
= & \mathbb{E}\left[\sum_{i=1}^{n}\left|F_{i}\right|^{2}\left(t_{i}-t_{i-1}\right)\right] \\
= & \mathbb{E}\left[\int_{0}^{T}\left|u_{t}\right|^{2} d t\right],
\end{aligned}
$$

where we applied the tower property (A.33) of conditional expectations and the facts that $B_{t_{i}}-B_{t_{i-1}}$ is independent of $\mathcal{F}_{t_{i-1}}$, with

$$
\mathbb{E}\left[B_{t_{i}}-B_{t_{i-1}}\right]=0, \quad \mathbb{E}\left[\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}\right]=t_{i}-t_{i-1}, \quad i=1,2, \ldots, n
$$



Fig. 4.19: Squared simple predictable process $t \mapsto u_{t}^{2}$.
The extension of the stochastic integral to square-integrable adapted processes $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$is obtained by a denseness and Cauchy sequence argument using the isometry (4.16), in the same way as in the proof of Proposition 4.12.
i) By Proposition 4.20 given $u \in L^{2}(\Omega \times[0, T])$ a square-integrable adapted process there exists a sequence $\left(u^{(n)}\right)_{n \geqslant 0}$ of simple predictable processes such that

$$
\lim _{n \rightarrow \infty}\left\|u-u^{(n)}\right\|_{L^{2}(\Omega \times[0, T])}=\lim _{n \rightarrow \infty} \sqrt{\mathbb{E}\left[\int_{0}^{T}\left|u_{t}-u_{t}^{(n)}\right|^{2} d t\right]}=0
$$

ii) Since the sequence $\left(u^{(n)}\right)_{n \geqslant 0}$ converges, it is a Cauchy sequence in $L^{2}\left(\Omega \times \mathbb{R}_{+}\right)$, hence by the Itô isometry (4.16), the sequence $\left(\int_{0}^{T} u_{t}^{(n)} d B_{t}\right)_{n \geqslant 0}$ is a Cauchy sequence in $L^{2}(\Omega)$, therefore it admits a limit in the complete space $L^{2}(\Omega)$. In this case we let

$$
\int_{0}^{T} u_{t} d B_{t}:=\lim _{n \rightarrow \infty} \int_{0}^{T} u_{t}^{(n)} d B_{t}
$$

and the limit is unique from (4.16) and satisfies (4.16).
iii) The fact that the random variable $\int_{0}^{T} u_{t} d B_{t}$ is centered can be proved first for a simple predictable process $u^{(n)}$ of the form (4.13), as

$$
\begin{aligned}
\mathbb{E}\left[\int_{0}^{T} u_{t}^{(n)} d B_{t}\right] & =\mathbb{E}\left[\sum_{i=1}^{n}\left(B_{t_{i}}-B_{t_{i-1}}\right) F_{i}\right] \\
& =\sum_{i=1}^{n} \mathbb{E}\left[\mathbb{E}\left[\left(B_{t_{i}}-B_{t_{i-1}}\right) F_{i} \mid \mathcal{F}_{t_{i-1}}\right]\right] \\
& =\sum_{i=1}^{n} \mathbb{E}\left[F_{i} \mathbb{E}\left[B_{t_{i}}-B_{t_{i-1}} \mid \mathcal{F}_{t_{i-1}}\right]\right] \\
& =\sum_{i=1}^{n} \mathbb{E}\left[F_{i} \mathbb{E}\left[B_{t_{i}}-B_{t_{i-1}}\right]\right] \\
& =0
\end{aligned}
$$

and this identity extends as above from simple predictable processes to adapted processes $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$in $L^{2}\left(\Omega \times \mathbb{R}_{+}\right)$by taking the limit as $n$ tends to infinity in the following equality:

$$
\mathbb{E}\left[\int_{0}^{T} u_{t} d t\right]=\mathbb{E}\left[\int_{0}^{T} u_{t}^{(n)} d t\right]+\mathbb{E}\left[\int_{0}^{T} u_{t}-u_{t}^{(n)} d t\right]=\mathbb{E}\left[\int_{0}^{T} u_{t}-u_{t}^{(n)} d t\right]
$$

since

$$
\left|\mathbb{E}\left[\int_{0}^{T}\left(u_{t}-u_{t}^{(n)}\right) d t\right]\right| \leqslant \mathbb{E}\left[\int_{0}^{T}\left|u_{t}-u_{t}^{(n)}\right| d t\right] \leqslant \sqrt{T \mathbb{E}\left[\int_{0}^{T}\left|u_{t}-u_{t}^{(n)}\right|^{2} d t\right]}
$$

The Itô isometry (4.16) can be similarly extended from simple predictable processes to adapted processes $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$in $L^{2}\left(\Omega \times \mathbb{R}_{+}\right)$.

As an application of the Itô isometry (4.16), we note in particular the identity

$$
\mathbb{E}\left[\left(\int_{0}^{T} B_{t} d B_{t}\right)^{2}\right]=\mathbb{E}\left[\int_{0}^{T}\left|B_{t}\right|^{2} d t\right]=\int_{0}^{T} \mathbb{E}\left[\left|B_{t}\right|^{2}\right] d t=\int_{0}^{T} t d t=\frac{T^{2}}{2}
$$

with

$$
\int_{0}^{T} B_{t} d B_{t} \stackrel{L^{2}(\Omega)}{=} \lim _{n \rightarrow \infty} \sum_{i=1}^{n} B_{t_{i-1}}\left(B_{t_{i}}-B_{t_{i-1}}\right)
$$

from (4.15).
The next corollary is obtained by bilinearity from the Itô isometry (4.16) by the same argument as in Corollary 4.13.
Corollary 4.22. The stochastic integral with respect to Brownian motion $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$satisfies the isometry

$$
\mathbb{E}\left[\int_{0}^{T} u_{t} d B_{t} \int_{0}^{T} v_{t} d B_{t}\right]=\mathbb{E}\left[\int_{0}^{T} u_{t} v_{t} d t\right]
$$

for all square-integrable adapted processes $\left(u_{t}\right)_{t \in \mathbb{R}_{+}},\left(v_{t}\right)_{t \in \mathbb{R}_{+}}$.
Proof. Applying the Itô isometry (4.16) to the processes $u+v$ and $u-v$, we have

$$
\begin{aligned}
& \mathbb{E}\left[\int_{0}^{T} u_{t} d B_{t} \int_{0}^{T} v_{t} d B_{t}\right] \\
& =\frac{1}{4}\left(\mathbb{E}\left[\left(\int_{0}^{T} u_{t} d B_{t}+\int_{0}^{T} v_{t} d B_{t}\right)^{2}-\left(\int_{0}^{T} u_{t} d B_{t}-\int_{0}^{T} v_{t} d B_{t}\right)^{2}\right]\right) \\
& =\frac{1}{4}\left(\mathbb{E}\left[\left(\int_{0}^{T}\left(u_{t}+v_{t}\right) d B_{t}\right)^{2}\right]-\mathbb{E}\left[\left(\int_{0}^{T}\left(u_{t}-v_{t}\right) d B_{t}\right)^{2}\right]\right) \\
& =\frac{1}{4}\left(\mathbb{E}\left[\int_{0}^{T}\left(u_{t}+v_{t}\right)^{2} d t\right]-\mathbb{E}\left[\int_{0}^{T}\left(u_{t}-v_{t}\right)^{2} d t\right]\right) \\
& =\frac{1}{4} \mathbb{E}\left[\int_{0}^{T}\left(\left(u_{t}+v_{t}\right)^{2}-\left(u_{t}-v_{t}\right)^{2}\right) d t\right] \\
& =\mathbb{E}\left[\int_{0}^{T} u_{t} v_{t} d t\right]
\end{aligned}
$$

In addition, when the integrand $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$is not a deterministic function of time, the random variable $\int_{0}^{T} u_{t} d B_{t}$ no longer has a Gaussian distribution, except in some exceptional cases.

## Definite stochastic integral

The definite stochastic integral of an adapted process $u \in L_{a d}^{2}\left(\Omega \times \mathbb{R}_{+}\right)$over an interval $[a, b] \subset[0, T]$ is defined as

$$
\int_{a}^{b} u_{t} d B_{t}:=\int_{0}^{T} \mathbb{1}_{[a, b]}(t) u_{t} d B_{t}
$$

with in particular

$$
\int_{a}^{b} d B_{t}=\int_{0}^{T} \mathbb{1}_{[a, b]}(t) d B_{t}=B_{b}-B_{a}, \quad 0 \leqslant a \leqslant b
$$

We also have the Chasles relation

$$
\int_{a}^{c} u_{t} d B_{t}=\int_{a}^{b} u_{t} d B_{t}+\int_{b}^{c} u_{t} d B_{t}, \quad 0 \leqslant a \leqslant b \leqslant c
$$

and the stochastic integral has the following linearity property:

$$
\int_{0}^{T}\left(u_{t}+v_{t}\right) d B_{t}=\int_{0}^{T} u_{t} d B_{t}+\int_{0}^{T} v_{t} d B_{t}, \quad u, v \in L^{2}\left(\mathbb{R}_{+}\right)
$$

### 4.5 Stochastic Calculus



Fig. 4.20: NGram Viewer output for the term "stochastic calculus".

## Stochastic modeling of asset returns

In the sequel, we consider the return at time $t \in \mathbb{R}_{+}$of the risky asset price process $\left(S_{t}\right)_{t \in \mathbb{R}_{+}}$, defined as

$$
\begin{equation*}
\frac{d S_{t}}{S_{t}}=\mu d t+\sigma d B_{t}, \quad \text { or } \quad d S_{t}=\mu S_{t} d t+\sigma S_{t} d B_{t} \tag{4.18}
\end{equation*}
$$

with $\mu \in \mathbb{R}$ and $\sigma>0$. Using the relation

$$
X_{T}=X_{0}+\int_{0}^{T} d X_{t}, \quad T>0
$$

which holds for any process $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$, Equation (4.18) can be rewritten in integral form as

$$
\begin{equation*}
S_{T}=S_{0}+\int_{0}^{T} d S_{t}=S_{0}+\mu \int_{0}^{T} S_{t} d t+\sigma \int_{0}^{T} S_{t} d B_{t} \tag{4.19}
\end{equation*}
$$

hence the need to define an integral with respect to $d B_{t}$, in addition to the usual integral with respect to $d t$. Note that in view of the definition (4.14), this is a continuous-time extension of the notion portfolio value based on a predictable portfolio strategy.

In Proposition 4.21 we have defined the stochastic integral of squareintegrable processes with respect to Brownian motion, thus we have made sense of the equation (4.19), where $\left(S_{t}\right)_{t \in \mathbb{R}_{+}}$is an $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$-adapted process, which can be rewritten in differential notation as in (4.18).

This model will be used to represent the random price $S_{t}$ of a risky asset at time $t$. Here the return $d S_{t} / S_{t}$ of the asset is made of two components: a constant return $\mu d t$ and a random return $\sigma d B_{t}$ parametrized by the coefficient $\sigma$, called the volatility.

Our goal is now to solve Equation (4.18), and for this we will need to introduce Itô's calculus in Section 4.5 after a review of classical deterministic calculus.

## Deterministic calculus

The fundamental theorem of calculus states that for any continuously differentiable (deterministic) function $f$ we have the integral relation

$$
f(x)=f(0)+\int_{0}^{x} f^{\prime}(y) d y
$$

In differential notation this relation is written as the first-order expansion

$$
\begin{equation*}
d f(x)=f^{\prime}(x) d x \tag{4.20}
\end{equation*}
$$

where $d x$ is "infinitesimally small". Higher-order expansions can be obtained from Taylor's formula, which, letting

$$
\Delta f(x):=f(x+\Delta x)-f(x)
$$

states that
$\Delta f(x)=f^{\prime}(x) \Delta x+\frac{1}{2} f^{\prime \prime}(x)(\Delta x)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(x)(\Delta x)^{3}+\frac{1}{4!} f^{(4)}(x)(\Delta x)^{4}+\cdots$.

Note that Relation (4.20), i.e. $d f(x)=f^{\prime}(x) d x$, can be obtained by neglecting all terms of order higher than one in Taylor's formula, since $(\Delta x)^{n} \ll \Delta x$, $n \geqslant 2$, as $\Delta x$ becomes "infinitesimally small".

## Stochastic calculus

Let us now apply Taylor's formula to Brownian motion, taking

$$
\Delta B_{t}=B_{t+\Delta t}-B_{t} \simeq \pm \sqrt{\Delta t}
$$

and letting

$$
\Delta f\left(B_{t}\right):=f\left(B_{t+\Delta t}\right)-f\left(B_{t}\right)
$$

we have
$\Delta f\left(B_{t}\right)$
$=f^{\prime}\left(B_{t}\right) \Delta B_{t}+\frac{1}{2} f^{\prime \prime}\left(B_{t}\right)\left(\Delta B_{t}\right)^{2}+\frac{1}{3!} f^{\prime \prime \prime}\left(B_{t}\right)\left(\Delta B_{t}\right)^{3}+\frac{1}{4!} f^{(4)}\left(B_{t}\right)\left(\Delta B_{t}\right)^{4}+\cdots$.
From the construction of Brownian motion by its small increments $\Delta B_{t}=$ $\pm \sqrt{\Delta t}$, it turns out that the terms in $(\Delta t)^{2}$ and $\Delta t \Delta B_{t} \simeq \pm(\Delta t)^{3 / 2}$ can be neglected in Taylor's formula at the first order of approximation in $\Delta t$. However, the term of order two

$$
\left(\Delta B_{t}\right)^{2}=( \pm \sqrt{\Delta t})^{2}=\Delta t
$$

can no longer be neglected in front of $\Delta t$ itself.

## Basic Itô formula

For $f \in \mathcal{C}^{2}(\mathbb{R}),{ }^{*}$ Taylor's formula written at the second order for Brownian motion reads

$$
\begin{equation*}
d f\left(B_{t}\right)=f^{\prime}\left(B_{t}\right) d B_{t}+\frac{1}{2} f^{\prime \prime}\left(B_{t}\right) d t \tag{4.21}
\end{equation*}
$$

for "infinitesimally small" $d t$. Note that writing this formula as

$$
\frac{d f\left(B_{t}\right)}{d t}=f^{\prime}\left(B_{t}\right) \frac{d B_{t}}{d t}+\frac{1}{2} f^{\prime \prime}\left(B_{t}\right)
$$

does not make sense because the pathwise derivative

$$
\frac{d B_{t}}{d t} \simeq \pm \frac{\sqrt{d t}}{d t} \simeq \pm \frac{1}{\sqrt{d t}} \simeq \pm \infty
$$

[^8]of $B_{t}$ with respect to $t$ does not exist. Integrating (4.21) on both sides and using the relation
$$
f\left(B_{t}\right)-f\left(B_{0}\right)=\int_{0}^{t} d f\left(B_{s}\right)
$$
together with (4.21), we get the integral form of Itô's formula for Brownian motion, i.e.
$$
f\left(B_{t}\right)=f\left(B_{0}\right)+\int_{0}^{t} f^{\prime}\left(B_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(B_{s}\right) d s
$$

## Itô processes

We now turn to the general expression of Itô's formula, which is stated for Itô processes.

Definition 4.23. An Itô process is a stochastic process $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$that can be written as

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t} v_{s} d s+\int_{0}^{t} u_{s} d B_{s}, \quad t \geqslant 0 \tag{4.22}
\end{equation*}
$$

or in differential notation

$$
d X_{t}=v_{t} d t+u_{t} d B_{t}
$$

where $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(v_{t}\right)_{t \in \mathbb{R}_{+}}$are square-integrable adapted processes.
In what follows, we let $\mathcal{C}_{b}^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$ denote the set of functions $f(t, x)$ of two variables which are continuously differentiable on $t \in \mathbb{R}_{+}$and twice differentiable in $x \in \mathbb{R}$, with bounded derivatives. Given $f \in \mathcal{C}_{b}^{1,2}\left(\mathbb{R}_{+} \times\right.$ $\mathbb{R}$ ), we let $\frac{\partial f}{\partial t}$ denote partial differentiation with respect to the first (time) variable in $f(t, x)$, while $\frac{\partial f}{\partial x}$ denotes partial differentiation with respect to the second (price) variable in $f(t, x)$.

Theorem 4.24. (Itô formula for Itô processes). For any Itô process $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$ of the form (4.22) and any $f \in \mathcal{C}_{b}^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$, we have

$$
\begin{align*}
& f\left(t, X_{t}\right) \\
& =f\left(0, X_{0}\right)+\int_{0}^{t} \frac{\partial f}{\partial s}\left(s, X_{s}\right) d s+\int_{0}^{t} v_{s} \frac{\partial f}{\partial x}\left(s, X_{s}\right) d s+\int_{0}^{t} u_{s} \frac{\partial f}{\partial x}\left(s, X_{s}\right) d B_{s} \\
& \quad+\frac{1}{2} \int_{0}^{t}\left|u_{s}\right|^{2} \frac{\partial^{2} f}{\partial x^{2}}\left(s, X_{s}\right) d s \tag{4.23}
\end{align*}
$$

Proof. The proof of the Itô formula can be outlined as follows in the case where $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}=\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard Brownian motion and $f(x)$ does not depend on time $t$. We refer to Theorem II-32, page 79 of Protter (2004) for the general case.

Let $\left\{0=t_{0}^{n} \leqslant t_{1}^{n} \leqslant \cdots \leqslant t_{n}^{n}=t\right\}, n \geqslant 1$, be a refining sequence of partitions of $[0, t]$ tending to the identity. We have the telescoping identity

$$
f\left(B_{t}\right)-f\left(B_{0}\right)=\sum_{k=1}^{n}\left(f\left(B_{t_{i}^{n}}\right)-f\left(B_{t_{i-1}^{n}}\right)\right)
$$

and from Taylor's formula

$$
f(y)-f(x)=(y-x) \frac{\partial f}{\partial x}(x)+\frac{1}{2}(y-x)^{2} \frac{\partial^{2} f}{\partial x^{2}}(x)+R(x, y)
$$

where the remainder $R(x, y)$ satisfies $R(x, y) \leqslant o\left(|y-x|^{2}\right)$, we get

$$
\begin{aligned}
f\left(B_{t}\right)-f\left(B_{0}\right)= & \sum_{k=1}^{n}\left(B_{t_{i}^{n}}-B_{t_{i-1}^{n}}\right) \frac{\partial f}{\partial x}\left(B_{t_{i-1}^{n}}\right)+\frac{1}{2} \sum_{k=1}^{n}\left|B_{t_{i}^{n}}-B_{t_{i-1}^{n}}\right|^{2} \frac{\partial^{2} f}{\partial x^{2}}\left(B_{t_{i-1}^{n}}\right) \\
& +\sum_{k=1}^{n} R\left(B_{t_{i}^{n}}, B_{t_{i-1}^{n}}\right)
\end{aligned}
$$

It remains to show that as $n$ tends to infinity the above converges to

$$
f\left(B_{t}\right)-f\left(B_{0}\right)=\int_{0}^{t} \frac{\partial f}{\partial x}\left(B_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f}{\partial x^{2}}\left(B_{s}\right) d s
$$

From the relation

$$
\int_{0}^{t} d f\left(s, X_{s}\right)=f\left(t, X_{t}\right)-f\left(0, X_{0}\right)
$$

we can rewrite (4.23) as

$$
\begin{aligned}
\int_{0}^{t} d f\left(s, X_{s}\right)= & \int_{0}^{t} \frac{\partial f}{\partial s}\left(s, X_{s}\right) d s+\int_{0}^{t} v_{s} \frac{\partial f}{\partial x}\left(s, X_{s}\right) d s+\int_{0}^{t} u_{s} \frac{\partial f}{\partial x}\left(s, X_{s}\right) d B_{s} \\
& +\frac{1}{2} \int_{0}^{t}\left|u_{s}\right|^{2} \frac{\partial^{2} f}{\partial x^{2}}\left(s, X_{s}\right) d s
\end{aligned}
$$

which allows us to rewrite (4.23) in differential notation, as

$$
\begin{aligned}
& d f\left(t, X_{t}\right) \\
& =\frac{\partial f}{\partial t}\left(t, X_{t}\right) d t+v_{t} \frac{\partial f}{\partial x}\left(t, X_{t}\right) d t+u_{t} \frac{\partial f}{\partial x}\left(t, X_{t}\right) d B_{t}+\frac{1}{2}\left|u_{t}\right|^{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t, X_{t}\right) d t .
\end{aligned}
$$

In case the function $x \mapsto f(x)$ does not depend on the time variable $t$ we get

$$
d f\left(X_{t}\right)=v_{t} \frac{\partial f}{\partial x}\left(X_{t}\right) d t+u_{t} \frac{\partial f}{\partial x}\left(X_{t}\right) d B_{t}+\frac{1}{2}\left|u_{t}\right|^{2} \frac{\partial^{2} f}{\partial x^{2}}\left(X_{t}\right) d t
$$

Taking $u_{t}=1, v_{t}=0$ and $X_{0}=0$ in (4.22) yields $X_{t}=B_{t}$, in which case the Itô formula (4.23)-(4.24) reads

$$
f\left(t, B_{t}\right)=f\left(0, B_{0}\right)+\int_{0}^{t} \frac{\partial f}{\partial s}\left(s, B_{s}\right) d s+\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, B_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f}{\partial x^{2}}\left(s, B_{s}\right) d s
$$

i.e. in differential notation:

$$
\begin{equation*}
d f\left(t, B_{t}\right)=\frac{\partial f}{\partial t}\left(t, B_{t}\right) d t+\frac{\partial f}{\partial x}\left(t, B_{t}\right) d B_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t, B_{t}\right) d t \tag{4.25}
\end{equation*}
$$

## Bivariate Itô formula

Next, consider two Itô processes $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(Y_{t}\right)_{t \in \mathbb{R}_{+}}$written in integral form as

$$
X_{t}=X_{0}+\int_{0}^{t} v_{s} d s+\int_{0}^{t} u_{s} d B_{s}, \quad t \geqslant 0
$$

and

$$
Y_{t}=Y_{0}+\int_{0}^{t} b_{s} d s+\int_{0}^{t} a_{s} d B_{s}, \quad t \geqslant 0
$$

or in differential notation as

$$
d X_{t}=v_{t} d t+u_{t} d B_{t}, \quad \text { and } \quad d Y_{t}=b_{t} d t+a_{t} d B_{t}, \quad t \geqslant 0
$$

The Itô formula can also be written for functions $f \in \mathcal{C}^{1,2,2}\left(\mathbb{R}_{+} \times \mathbb{R}^{2}\right)$ of two state variables as

$$
\begin{align*}
& d f\left(t, X_{t}, Y_{t}\right)=\frac{\partial f}{\partial t}\left(t, X_{t}, Y_{t}\right) d t+\frac{\partial f}{\partial x}\left(t, X_{t}, Y_{t}\right) d X_{t}+\frac{1}{2}\left|u_{t}\right|^{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t, X_{t}, Y_{t}\right) d t \\
& \quad+\frac{\partial f}{\partial y}\left(t, X_{t}, Y_{t}\right) d Y_{t}+\frac{1}{2}\left|a_{t}\right|^{2} \frac{\partial^{2} f}{\partial y^{2}}\left(t, X_{t}, Y_{t}\right) d t+u_{t} a_{t} \frac{\partial^{2} f}{\partial x \partial y}\left(t, X_{t}, Y_{t}\right) d t \tag{4.26}
\end{align*}
$$

## Itô multiplication table

Applying the bivariate Itô formula (4.26) to the function $f(x, y):=x y$ shows that

$$
\begin{equation*}
d\left(X_{t} Y_{t}\right)=X_{t} d Y_{t}+Y_{t} d X_{t}+a_{t} u_{t} d t=X_{t} d Y_{t}+Y_{t} d X_{t}+d X_{t} \cdot d Y_{t} \tag{4.27}
\end{equation*}
$$

where the product

$$
\begin{aligned}
d X_{t} \cdot d Y_{t} & =\left(v_{t} d t+u_{t} d B_{t}\right) \cdot\left(b_{t} d t+a_{t} d B_{t}\right) \\
& =b_{t} v_{t} d t \cdot d t+b_{t} u_{t} d t \cdot d B_{t}+a_{t} v_{t} d t \cdot d B_{t}+a_{t} u_{t} d B_{t} \cdot d B_{t} \\
& =a_{t} u_{t} d t
\end{aligned}
$$

can be computed according to the Itô rule

$$
\begin{equation*}
d t \cdot d t=0, \quad d t \cdot d B_{t}=0, \quad d B_{t} \cdot d B_{t}=d t \tag{4.28}
\end{equation*}
$$

which can be encoded in the following Itô multiplication table:

| $\cdot$ | $d t$ | $d B_{t}$ |
| :---: | :---: | :---: |
| $d t$ | 0 | 0 |
| $d B_{t}$ | 0 | $d t$ |

Table 4.1: Itô multiplication table.
It follows similarly from the Itô Table 4.1 that

$$
\begin{aligned}
\left(d X_{t}\right)^{2} & =\left(v_{t} d t+u_{t} d B_{t}\right) \cdot\left(v_{t} d t+u_{t} d B_{t}\right) \\
& =\left(v_{t}\right)^{2} d t \cdot d t+\left(u_{t}\right)^{2} d B_{t} \cdot d B_{t}+2 u_{t} v_{t} d t \cdot d B_{t} \\
& =\left(u_{t}\right)^{2} d t
\end{aligned}
$$

Consequently, (4.24) can be rewritten as

$$
\begin{equation*}
d f\left(t, X_{t}\right)=\frac{\partial f}{\partial t}\left(t, X_{t}\right) d t+\frac{\partial f}{\partial x}\left(t, X_{t}\right) d X_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t, X_{t}\right) d X_{t} \cdot d X_{t} \tag{4.29}
\end{equation*}
$$

and the Itô formula for functions $f \in \mathcal{C}^{1,2,2}\left(\mathbb{R}_{+} \times \mathbb{R}^{2}\right)$ of two state variables can be similarly rewritten as

$$
\begin{aligned}
& d f\left(t, X_{t}, Y_{t}\right)=\frac{\partial f}{\partial t}\left(t, X_{t}, Y_{t}\right) d t+\frac{\partial f}{\partial x}\left(t, X_{t}, Y_{t}\right) d X_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t, X_{t}, Y_{t}\right)\left(d X_{t}\right)^{2} \\
& +\frac{\partial f}{\partial y}\left(t, X_{t}, Y_{t}\right) d Y_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial y^{2}}\left(t, X_{t}, Y_{t}\right)\left(d Y_{t}\right)^{2}+\frac{\partial^{2} f}{\partial x \partial y}\left(t, X_{t}, Y_{t}\right)\left(d X_{t} \cdot d Y_{t}\right)
\end{aligned}
$$

## Examples

Applying Itô's formula (4.25) to $\left(B_{t}\right)^{2}$ with

$$
\left(B_{t}\right)^{2}=f\left(t, B_{t}\right) \quad \text { and } \quad f(t, x)=x^{2}
$$

and

$$
\frac{\partial f}{\partial t}(t, x)=0, \quad \frac{\partial f}{\partial x}(t, x)=2 x, \quad \frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}(t, x)=1
$$

we find

$$
\begin{aligned}
d\left(\left(B_{t}\right)^{2}\right) & =d f\left(B_{t}\right) \\
& =\frac{\partial f}{\partial t}\left(t, B_{t}\right) d t+\frac{\partial f}{\partial x}\left(t, B_{t}\right) d B_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t, B_{t}\right) d t \\
& =2 B_{t} d B_{t}+d t .
\end{aligned}
$$

Note that from the Itô Table 4.1 we could also write directly

$$
d\left(\left(B_{t}\right)^{2}\right)=B_{t} d B_{t}+B_{t} d B_{t}+\left(d B_{t}\right)^{2}=2 B_{t} d B_{t}+d t
$$

Next, by integration in $t \in[0, T]$ we find

$$
\begin{equation*}
B_{T}^{2}=B_{0}^{2}+2 \int_{0}^{T} B_{s} d B_{s}+\int_{0}^{T} d t=2 \int_{0}^{T} B_{s} d B_{s}+T \tag{4.30}
\end{equation*}
$$

hence the relation

$$
\begin{equation*}
\int_{0}^{T} B_{s} d B_{s}=\frac{1}{2}\left(B_{T}^{2}-T\right) \tag{4.31}
\end{equation*}
$$

see Exercises 4.7 and 4.15 for the probability distribution of $\int_{0}^{T} B_{s} d B_{s}$.
Similarly, we have
i) $d\left(\left(B_{t}\right)^{3}\right)=3\left(B_{t}\right)^{2} d B_{t}+3 B_{t} d t$.

Letting $f(x):=x^{3}$ with $f^{\prime}(x)=3 x^{2}$ and $f^{\prime \prime}(x)=6 x$, we have

$$
d\left(\left(B_{t}\right)^{3}\right)=d f\left(B_{t}\right)=f^{\prime}\left(B_{t}\right) d B_{t}+\frac{1}{2} f^{\prime \prime}\left(B_{t}\right) d t=3\left(B_{t}\right)^{2} d B_{t}+3 B_{t} d t
$$

ii) $d\left(\sin B_{t}\right)=\cos \left(B_{t}\right) d B_{t}-\frac{1}{2} \sin \left(B_{t}\right) d t$.

Letting $f(x):=\sin (x)$ with $f^{\prime}(x)=\cos (x), f^{\prime \prime}(x)=-\sin (x)$, we have

$$
\begin{aligned}
d \sin \left(B_{t}\right) & =d f\left(B_{t}\right) \\
& =f^{\prime}\left(B_{t}\right) d B_{t}+\frac{1}{2} f^{\prime \prime}\left(B_{t}\right) d t \\
& =\cos \left(B_{t}\right) d B_{t}-\frac{1}{2} \sin \left(B_{t}\right) d t
\end{aligned}
$$

iii) $d \mathrm{e}^{B_{t}}=\mathrm{e}^{B_{t}} d B_{t}+\frac{1}{2} \mathrm{e}^{B_{t}} d t$.

Letting $f(x):=\mathrm{e}^{x}$ with $f^{\prime}(x)=\mathrm{e}^{x}, f^{\prime \prime}(x)=\mathrm{e}^{x}$, we have

$$
\begin{aligned}
d \mathrm{e}^{B_{t}} & =d f\left(B_{t}\right) \\
& =f^{\prime}\left(B_{t}\right) d B_{t}+\frac{1}{2} f^{\prime \prime}\left(B_{t}\right) d t \\
& =\mathrm{e}^{B_{t}} d B_{t}+\frac{1}{2} \mathrm{e}^{B_{t}} d t
\end{aligned}
$$

iv) $d \log B_{t}=\frac{1}{B_{t}} d B_{t}-\frac{1}{2\left(B_{t}\right)^{2}} d t$.

Letting $f(x):=\log x$ with $f^{\prime}(x)=1 / x$ and $f^{\prime \prime}(x)=-1 / x^{2}$, we have

$$
d \log B_{t}=d f\left(B_{t}\right)=f^{\prime}\left(B_{t}\right) d B_{t}+\frac{1}{2} f^{\prime \prime}\left(B_{t}\right) d t=\frac{d B_{t}}{B_{t}}-\frac{d t}{2\left(B_{t}\right)^{2}}
$$

v) $d \mathrm{e}^{t B_{t}}=B_{t} \mathrm{e}^{t B_{t}} d t+\frac{t^{2}}{2} \mathrm{e}^{t B_{t}} d t+t \mathrm{e}^{t B_{t}} d B_{t}$.

Letting $f(t, x):=\mathrm{e}^{x t}$ with

$$
\frac{\partial f}{\partial t}(t, x)=x \mathrm{e}^{x t}, \quad \frac{\partial f}{\partial x}(t, x)=t \mathrm{e}^{x t}, \quad \frac{\partial^{2} f}{\partial x^{2}}(t, x)=t^{2} \mathrm{e}^{x t}
$$

we have

$$
\begin{aligned}
d \mathrm{e}^{t B_{t}} & =d f\left(t, B_{t}\right) \\
& =\frac{\partial f}{\partial t}\left(t, B_{t}\right) d t+\frac{\partial f}{\partial x}\left(t, B_{t}\right) d B_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t, B_{t}\right) d t \\
& =B_{t} \mathrm{e}^{t B_{t}} d t+t \mathrm{e}^{t B_{t}} d B_{t}+\frac{t^{2}}{2} \mathrm{e}^{t B_{t}} d t
\end{aligned}
$$

vi) $d \cos \left(2 t+B_{t}\right)=-2 \sin \left(2 t+B_{t}\right) d t-\sin \left(2 t+B_{t}\right) d B_{t}-\frac{1}{2} \cos \left(2 t+B_{t}\right) d t$.

Letting $f(t, x):=\cos (2 t+x)$ with

$$
\frac{\partial f}{\partial t}(t, x)=-2 \sin (2 t+x), \frac{\partial f}{\partial x}(t, x)=-\sin (2 t+x), \frac{\partial^{2} f}{\partial x^{2}}(t, x)=-\cos (2 t+x)
$$

we have

$$
\begin{aligned}
d \cos \left(2 t+B_{t}\right) & =d f\left(t, B_{t}\right) \\
& =\frac{\partial f}{\partial t}\left(t, B_{t}\right) d t+\frac{\partial f}{\partial x}\left(t, B_{t}\right) d B_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t, B_{t}\right) d t \\
& =-2 \sin \left(2 t+B_{t}\right) d t-\sin \left(2 t+B_{t}\right) d B_{t}-\frac{1}{2} \cos \left(2 t+B_{t}\right) d t
\end{aligned}
$$

## Notation

We close this section with some comments on the practice of Itô's calculus. In certain finance textbooks, Itô's formula for e.g. geometric Brownian motion $\left(S_{t}\right)_{t \in \mathbb{R}_{+}}$given by

$$
d S_{t}=\mu S_{t} d t+\sigma S_{t} d B_{t}
$$

can be found written in the notation

$$
\begin{aligned}
f\left(T, S_{T}\right)= & f\left(0, S_{0}\right)+\sigma \int_{0}^{T} S_{t} \frac{\partial f}{\partial S_{t}}\left(t, S_{t}\right) d B_{t}+\mu \int_{0}^{T} S_{t} \frac{\partial f}{\partial S_{t}}\left(t, S_{t}\right) d t \\
& +\int_{0}^{T} \frac{\partial f}{\partial t}\left(t, S_{t}\right) d t+\frac{1}{2} \sigma^{2} \int_{0}^{T} S_{t}^{2} \frac{\partial^{2} f}{\partial S_{t}^{2}}\left(t, S_{t}\right) d t
\end{aligned}
$$

or

$$
d f\left(S_{t}\right)=\sigma S_{t} \frac{\partial f}{\partial S_{t}}\left(S_{t}\right) d B_{t}+\mu S_{t} \frac{\partial f}{\partial S_{t}}\left(S_{t}\right) d t+\frac{1}{2} \sigma^{2} S_{t}^{2} \frac{\partial^{2} f}{\partial S_{t}^{2}}\left(S_{t}\right) d t
$$

The notation $\frac{\partial f}{\partial S_{t}}\left(S_{t}\right)$ can in fact be easily misused in combination with the fundamental theorem of classical calculus, and potentially leads to the wrong identity

$$
d f\left(S_{t}\right)=\frac{\partial f}{\partial S_{t}}\left(\widehat{\left.S_{t}\right) d S_{t}}\right.
$$

as in the following actual example:


Fig. 4.21: Wrong application of Itô's formula (sample).

Similarly, writing

$$
d f\left(B_{t}\right)=\frac{\partial f}{\partial x}\left(B_{t}\right) d B_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(B_{t}\right) d t
$$

is consistent, while writing

$$
d f\left(B_{t}\right)=\frac{\partial f\left(B_{t}\right)}{\partial B_{t}} d B_{t}+\frac{1}{2} \frac{\partial^{2} f\left(B_{t}\right)}{\partial B_{t}^{2}} d t
$$

is a potential source of confusion. Note also that the right-hand side of the Itô formula uses partial derivatives while its left-hand side is a total derivative.

## Stochastic differential equations

In addition to geometric Brownian motion there exists a large family of stochastic differential equations that can be studied, although most of the time they cannot be explicitly solved. Let now

$$
\sigma: \mathbb{R}_{+} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{n}
$$

where $\mathbb{R}^{d} \otimes \mathbb{R}^{n}$ denotes the space of $d \times n$ matrices, and

$$
b: \mathbb{R}_{+} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}
$$

satisfy the global Lipschitz condition

$$
\|\sigma(t, x)-\sigma(t, y)\|^{2}+\|b(t, x)-b(t, y)\|^{2} \leqslant K^{2}\|x-y\|^{2}
$$

$t \in \mathbb{R}_{+}, x, y \in \mathbb{R}^{n}$. Then there exists a unique "strong" solution to the stochastic differential equation

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s}, \quad t \geqslant 0 \tag{4.32}
\end{equation*}
$$

i.e., in differential notation

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t}, \quad t \geqslant 0
$$

where $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$is a $d$-dimensional Brownian motion, see e.g. Theorem V-7 in Protter (2004). In addition, the solution process $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$of (4.32) has the Markov property, see § V-6 of Protter (2004).

The term $\sigma\left(s, X_{s}\right)$ in (4.32) will be interpreted later on in Chapters 8-9 as a local volatility component.
Stochastic differential equations can be used to model the behaviour of a variety of quantities, such as

- stock prices,
- interest rates,
- exchange rates,
- weather factors,
- electricity/energy demand,
- commodity (e.g. oil) prices, etc.

Next, we consider several examples of stochastic differential equations that can be solved explicitly using Itô's calculus, in addition to geometric Brownian motion. See e.g. § II-4.4 of Kloeden and Platen (1999) for more examples of explicitly solvable stochastic differential equations.

## Examples of stochastic differential equations

1. Consider the mean-reverting stochastic differential equation

$$
\begin{equation*}
d X_{t}=-\alpha X_{t} d t+\sigma d B_{t}, \quad X_{0}=x_{0} \tag{4.33}
\end{equation*}
$$

with $\alpha>0$ and $\sigma>0$.

```
N=10000; t <- 0:(N-1); dt <- 1.0/N;alpha=5; sigma=0.4;
dB <- rnorm(N,mean=0,sd=sqrt(dt));X <- rep(0,N);X[1]=0.5
for (j in 2:N){X[j]=X[j-1]-alpha*X[j-1]*dt+sigma*dB[j]}
plot(t*dt, X, xlab = "t", ylab = "", type = "l", ylim = c(-0.5,1), col = "blue")
abline(h=0)
```



Fig. 4.22: Simulated path of (4.33) with $\alpha=10, \sigma=0.2$ and $X_{0}=0.5$.

We look for a solution of the form

$$
X_{t}=a(t) Y_{t}=a(t)\left(x_{0}+\int_{0}^{t} b(s) d B_{s}\right)
$$

where

$$
Y_{t}:=x_{0}+\int_{0}^{t} b(s) d B_{s}
$$

and $a(\cdot), b(\cdot)$ are deterministic functions of time. After applying Theorem 4.24 to the Itô process $x_{0}+\int_{0}^{t} b(s) d B_{s}$ of the form (4.22) with
$u_{t}=b(t)$ and $v(t)=0$, and to the function $f(t, x)=a(t) x$, we find

$$
\begin{align*}
d X_{t} & =d\left(a(t) Y_{t}\right) \\
& =Y_{t} a^{\prime}(t) d t+a(t) d Y_{t} \\
& =Y_{t} a^{\prime}(t) d t+a(t) b(t) d B_{t} \tag{4.34}
\end{align*}
$$

By identification of (4.33) with (4.34), we get

$$
\left\{\begin{array}{l}
a^{\prime}(t)=-\alpha a(t) \\
a(t) b(t)=\sigma
\end{array}\right.
$$

hence $a(t)=a(0) \mathrm{e}^{-\alpha t}=\mathrm{e}^{-\alpha t}$ and $b(t)=\sigma / a(t)=\sigma \mathrm{e}^{\alpha t}$, which shows that

$$
\begin{equation*}
X_{t}=x_{0} \mathrm{e}^{-\alpha t}+\sigma \int_{0}^{t} \mathrm{e}^{-(t-s) \alpha} d B_{s}, \quad t \geqslant 0 \tag{4.35}
\end{equation*}
$$

Using integration by parts, we can also write

$$
\begin{equation*}
X_{t}=x_{0} \mathrm{e}^{-\alpha t}+\sigma B_{t}-\sigma \alpha \int_{0}^{t} \mathrm{e}^{-(t-s) \alpha} B_{s} d s, \quad t \geqslant 0 \tag{4.36}
\end{equation*}
$$

Remark: the solution of the equation (4.33) cannot be written as a function $f\left(t, B_{t}\right)$ of $t$ and $B_{t}$ as in the proof of Proposition 5.15.
2. Consider the stochastic differential equation

$$
\begin{equation*}
d X_{t}=t X_{t} d t+\mathrm{e}^{t^{2} / 2} d B_{t}, \quad X_{0}=x_{0} \tag{4.37}
\end{equation*}
$$

```
N=10000;T<-2.0; t <- 0:(N-1); dt <- T/N;
dB <- rnorm(N,mean=0,sd= sqrt(dt));X <- rep(0,N);X[1]=0.5
for (j in 2:N) {X[j]=X[j-1]+j*X[j-1]*dt*dt+exp(j*dt*j*dt/2)*dB[j]}
plot(t*dt, X, xlab = "t", ylab = "", type = "l", ylim = c(-0.5,10), col = "blue")
abline(h=0)
```

Looking for a solution of the form $X_{t}=a(t)\left(X_{0}+\int_{0}^{t} b(s) d B_{s}\right)$, where $a(\cdot)$ and $b(\cdot)$ are deterministic functions of time, we get $a^{\prime}(t) / a(t)=t$ and $a(t) b(t)=\mathrm{e}^{t^{2} / 2}$, hence $a(t)=\mathrm{e}^{t^{2} / 2}$ and $b(t)=1$, which yields $X_{t}=\mathrm{e}^{t^{2} / 2}\left(X_{0}+B_{t}\right), t \geqslant 0$.


Fig. 4.23: Simulated path of (4.37).
3. Consider the stochastic differential equation

$$
\begin{equation*}
d Y_{t}=\left(\sigma^{2}-2 \alpha Y_{t}\right) d t+2 \sigma \sqrt{Y_{t}} d B_{t} \tag{4.38}
\end{equation*}
$$

where $Y_{0}>0, \alpha \in \mathbb{R}$, and $\sigma>0$.

```
N=10000; t <- 0:(N-1); dt <- 1.0/N;mu=-5;sigma=1;
dB <- rnorm(N,mean=0,sd=sqrt(dt));Y <- rep(0,N);Y[1]=0.5
for (j in 2:N) {Y[j]=max (0,Y[j-1] +(2*mu*Y[j-1]+sigma*sigma)*dt
 +2*sigma*sqrt(Y[j-1])*dB[j])}
plot(t*dt, Y, xlab = "t", ylab = "", type = "1", ylim = c(-0.1,1), col = "blue")
abline(h=0)
```

Letting

$$
X_{t}:=\mathrm{e}^{-\alpha t} \sqrt{Y_{0}}+\sigma \int_{0}^{t} \mathrm{e}^{-(t-s) \alpha} d B_{s}, \quad t \geqslant 0
$$

denote the solution of $d X_{t}=-\alpha X_{t} d t+\sigma d B_{t}$, see (4.35), by the Itô formula the process $Y_{t}:=\left(X_{t}\right)^{2}$ satisfies the stochastic differential equation

$$
\begin{aligned}
d Y_{t} & =2 X_{t} d X_{t}+\sigma^{2} d t \\
& =-2 \alpha X_{t}^{2} d t+2 \sigma X_{t} d B_{t}+\sigma^{2} d t \\
& =\left(\sigma^{2}-2 \alpha X_{t}^{2}\right) d t+2 \sigma\left|X_{t}\right| \operatorname{sign}\left(X_{t}\right) d B_{t} \\
& =\left(\sigma^{2}-2 \alpha Y_{t}\right) d t+2 \sigma \sqrt{Y_{t}} d W_{t}
\end{aligned}
$$

where the process

$$
W_{t}:=\int_{0}^{t} \operatorname{sign}\left(X_{\tau}\right) d B_{\tau}, \quad t \geqslant 0
$$

is a standard Brownian motion by the Lévy characterization theorem, see e.g. Theorem IV.3.6 in Revuz and Yor (1994). In this case, $Y_{t}=\left(X_{t}\right)^{2}$ is called a weak solution of (4.38).


Fig. 4.24: Simulated path of (4.38) with $\alpha=-5$ and $\sigma=1$.

See Proposition 2.1 in Hefter and Herzwurm (2017) for the representation of the strong solution of (4.38).

## Exercises

Exercise 4.1 Compute $\mathbb{E}\left[B_{s} B_{t}\right]$ in terms of $s, t \geqslant 0$.
Exercise 4.2 Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$denote a standard Brownian motion. Let $c>0$. Among the following processes, tell which is a standard Brownian motion and which is not. Justify your answer.
a) $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}:=\left(B_{c+t}-B_{c}\right)_{t \in \mathbb{R}_{+}}$,
b) $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}:=\left(B_{c t^{2}}\right)_{t \in \mathbb{R}_{+}}$,
c) $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}:=\left(c B_{t / c^{2}}\right)_{t \in \mathbb{R}_{+}}$,
d) $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}:=\left(B_{t}+B_{t / 2}\right)_{t \in \mathbb{R}_{+}}$.

Exercise 4.3 Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$denote a standard Brownian motion. Compute the stochastic integrals

$$
\int_{0}^{T} 2 d B_{t} \quad \text { and } \quad \int_{0}^{T}\left(2 \times \mathbb{1}_{[0, T / 2]}(t)+\mathbb{1}_{(T / 2, T]}(t)\right) d B_{t}
$$

and determine their probability distributions (including mean and variance).

Exercise 4.4 Determine the probability distribution (including mean and variance) of the stochastic integral $\int_{0}^{2 \pi} \sin (t) d B_{t}$.

Exercise 4.5 Let $T>0$. Show that for $f:[0, T] \mapsto \mathbb{R}$ a differentiable function such that $f(T)=0$, we have

$$
\int_{0}^{T} f(t) d B_{t}=-\int_{0}^{T} f^{\prime}(t) B_{t} d t
$$

Hint: Apply Itô's calculus to $t \mapsto f(t) B_{t}$.

Exercise 4.6 Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$denote a standard Brownian motion.
a) Find the probability distribution of the stochastic integral $\int_{0}^{1} t^{2} d B_{t}$.
b) Find the probability distribution of the stochastic integral $\int_{0}^{1} t^{-1 / 2} d B_{t}$.

Exercise 4.7 Find the mean, variance and probability distribution of the stochastic integral $\int_{0}^{T} B_{t} d B_{t}$.

Exercise 4.8 Given $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$a standard Brownian motion and $n \geqslant 1$, let the random variable $X_{n}$ be defined as

$$
X_{n}:=\int_{0}^{2 \pi} \sin (n t) d B_{t}, \quad n \geqslant 1
$$

a) Give the probability distribution of $X_{n}$ for all $n \geqslant 1$.
b) Show that $\left(X_{n}\right)_{n \geqslant 1}$ is a sequence of identically distributed and pairwise independent random variables.
Hint: We have $\sin a \sin b=\frac{1}{2}(\cos (a-b)-\cos (a+b)), a, b \in \mathbb{R}$.
Exercise 4.9 Apply the Itô formula to the process $X_{t}:=\sin ^{2}\left(B_{t}\right), t \geqslant 0$.

Exercise 4.10 Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$denote a standard Brownian motion.
a) Using the Itô isometry and the known relations

$$
B_{T}=\int_{0}^{T} d B_{t} \quad \text { and } \quad B_{T}^{2}=T+2 \int_{0}^{T} B_{t} d B_{t}
$$

compute the third and fourth moments $\mathbb{E}\left[B_{T}^{3}\right]$ and $\mathbb{E}\left[B_{T}^{4}\right]$.
b) Give the third and fourth moments of the centered normal distribution with variance $\sigma^{2}$.

Exercise 4.11 Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard Brownian motion.
a) Show that

$$
\mathbb{E}\left[\int_{0}^{t} \frac{\left|B_{s}\right|}{s} d s\right]<\infty, \quad t>0
$$

Hint: The Gaussian distribution $\mathcal{N}(0, s)$ has the probability density function $x \mapsto \mathrm{e}^{-x^{2} /(2 s)} / \sqrt{2 \pi s}$.
b) We let

$$
\widehat{B}_{t}:=B_{t}-\int_{0}^{t} \frac{B_{s}}{s} d s, \quad t>0
$$

Compute the mean and variance of $\widehat{B}_{t}$.
c) Show that $\widehat{B}_{t}$ is independent of $B_{t}$ for all $t>0$.

Hint: As the random vector $\left(B_{t}, \widehat{B}_{t}\right)$ has a bivariate Gaussian distribution, the random variables $B_{t}$ and $\widehat{B}_{t}$ are independent if and only if they are uncorrelated.

Exercise 4.12 Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$denote a standard Brownian motion. Given $T>0$, find the stochastic integral decomposition of $\left(B_{T}\right)^{3}$ as

$$
\begin{equation*}
\left(B_{T}\right)^{3}=C+\int_{0}^{T} \zeta_{t, T} d B_{t} \tag{4.39}
\end{equation*}
$$

where $C \in \mathbb{R}$ is a constant and $\left(\zeta_{t, T}\right)_{t \in[0, T]}$ is an adapted process to be determined.

Exercise 4.13 Let $f \in L^{2}([0, T])$, and consider a standard Brownian motion $\left(B_{t}\right)_{t \in[0, T]}$.
a) Compute the conditional expectation

$$
\mathbb{E}\left[\mathrm{e}^{\int_{0}^{T} f(s) d B_{s}} \mid \mathcal{F}_{t}\right], \quad 0 \leqslant t \leqslant T
$$

where $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ denotes the filtration generated by $\left(B_{t}\right)_{t \in[0, T]}$.
b) Using the result of Question (a), show that the process

$$
t \longmapsto \exp \left(\int_{0}^{t} f(s) d B_{s}-\frac{1}{2} \int_{0}^{t} f^{2}(s) d s\right), \quad 0 \leqslant t \leqslant T
$$

is an $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$-martingale, where $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ denotes the filtration generated by $\left(B_{t}\right)_{t \in[0, T]}$.
c) By applying the result of Question (b) to the function $f(t):=\sigma \mathbb{1}_{[0, T]}(t)$, show that the geometric Brownian motion process $\left(\mathrm{e}^{\sigma B_{t}-\sigma^{2} t / 2}\right)_{t \in[0, T]}$ is an $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$-martingale for any $\sigma \in \mathbb{R}$.

Exercise 4.14 Consider two assets whose prices $S_{t}^{(1)}, S_{t}^{(2)}$ follow the Bachelier dynamics

$$
d S_{t}^{(1)}=\mu S_{t}^{(1)} d t+\sigma_{1} d W_{t}^{(1)}, \quad d S_{t}^{(2)}=\mu S_{t}^{(2)} d t+\sigma_{2} d W_{t}^{(2)}, \quad t \in[0, T]
$$

where $\left(W_{t}^{(1)}\right)_{t \in[0, T]},\left(W_{t}^{(2)}\right)_{t \in[0, T]}$ are two Brownian motions with correlation $\rho \in[-1,1]$, i.e. we have $d W_{t}^{(1)} \cdot d W_{t}^{(2)}=\rho d t$. Show that the spread $S_{t}:=$ 192

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html
$S_{t}^{(2)}-S_{t}^{(1)}$ also satisfies an equation of the form

$$
d S_{t}=\mu S_{t} d t+\sigma d W_{t}
$$

where $\mu \in \mathbb{R},\left(W_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard Brownian motion, and $\sigma>0$ should be given in terms of $\sigma_{1}, \sigma_{2}$ and $\rho$.

Hint: By the Lévy characterization theorem, see e.g. Theorem IV.3.6 in Revuz and Yor (1994), Brownian motion $\left(W_{t}\right)_{t \in \mathbb{R}_{+}}$is the only continuous martingale such that $d W_{t} \cdot d W_{t}=d t$.

## Exercise 4.15

a) Compute the moment generating function

$$
\mathbb{E}\left[\exp \left(\beta \int_{0}^{T} B_{t} d B_{t}\right)\right]
$$

for all $\beta<1 / T$.
Hint: Expand $\left(B_{T}\right)^{2}$ using the Itô formula as in (4.30).
b) Find the probability distribution of the stochastic integral $\int_{0}^{T} B_{t} d B_{t}$.

Exercise 4.16
a) Solve the stochastic differential equation

$$
\begin{equation*}
d X_{t}=-b X_{t} d t+\sigma \mathrm{e}^{-b t} d B_{t}, \quad t \geqslant 0 \tag{4.40}
\end{equation*}
$$

where $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard Brownian motion and $\sigma, b \in \mathbb{R}$.
b) Solve the stochastic differential equation

$$
\begin{equation*}
d X_{t}=-b X_{t} d t+\sigma \mathrm{e}^{-a t} d B_{t}, \quad t \geqslant 0 \tag{4.41}
\end{equation*}
$$

where $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard Brownian motion and $a, b, \sigma>0$ are positive constants.
c) Find the probability distribution of $X_{t}, t>0$.

Exercise 4.17 Given $T>0$, let $\left(X_{t}\right)_{t \in[0, T)}$ denote the solution of the stochastic differential equation

$$
\begin{equation*}
d X_{t}=\sigma d B_{t}-\frac{X_{t}}{T-t} d t, \quad t \in[0, T) \tag{4.42}
\end{equation*}
$$

under the initial condition $X_{0}=0$ and $\sigma>0$.
a) Show that

$$
X_{t}=(T-t) \int_{0}^{t} \frac{\sigma}{T-s} d B_{s}, \quad 0 \leqslant t<T
$$

Hint: Start by computing $d\left(X_{t} /(T-t)\right)$ using the Itô formula.
b) Show that $\mathbb{E}\left[X_{t}\right]=0$ for all $t \in[0, T)$.
c) Show that $\operatorname{Var}\left[X_{t}\right]=\sigma^{2} t(T-t) / T$ for all $t \in[0, T)$.
d) Show that $\lim _{t \rightarrow T} X_{t}=0$ in $L^{2}(\Omega)$. The process $\left(X_{t}\right)_{t \in[0, T]}$ is called a Brownian bridge.

Exercise 4.18 Exponential Vašíček (1977) model (1). Consider a Vasicek process $\left(r_{t}\right)_{t \in \mathbb{R}_{+}}$solving of the stochastic differential equation

$$
d r_{t}=\left(a-b r_{t}\right) d t+\sigma d B_{t}, \quad t \geqslant 0
$$

where $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard Brownian motion and $\sigma, a, b>0$ are positive constants. Show that the exponential $X_{t}:=\mathrm{e}^{r_{t}}$ satisfies a stochastic differential equation of the form

$$
d X_{t}=X_{t}\left(\widetilde{a}-\widetilde{b} f\left(X_{t}\right)\right) d t+\sigma g\left(X_{t}\right) d B_{t}
$$

where the coefficients $\widetilde{a}$ and $\widetilde{b}$ and the functions $f(x)$ and $g(x)$ are to be determined.

Exercise 4.19 Exponential Vasicek model (2). Consider a short-term rate interest rate process $\left(r_{t}\right)_{t \in \mathbb{R}_{+}}$in the exponential Vasicek model:

$$
\begin{equation*}
d r_{t}=\left(\eta-a \log r_{t}\right) r_{t} d t+\sigma r_{t} d B_{t} \tag{4.43}
\end{equation*}
$$

where $\eta, a, \sigma$ are positive parameters and $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard Brownian motion.
a) Find the solution $\left(Z_{t}\right)_{t \in \mathbb{R}_{+}}$of the stochastic differential equation

$$
d Z_{t}=-a Z_{t} d t+\sigma d B_{t}
$$

as a function of the initial condition $Z_{0}$, where $a$ and $\sigma$ are positive parameters.
b) Find the solution $\left(Y_{t}\right)_{t \in \mathbb{R}_{+}}$of the stochastic differential equation

$$
\begin{equation*}
d Y_{t}=\left(\theta-a Y_{t}\right) d t+\sigma d B_{t} \tag{4.44}
\end{equation*}
$$

as a function of the initial condition $Y_{0}$. Hint: Let $Z_{t}:=Y_{t}-\theta / a$.
c) Let $X_{t}=\mathrm{e}^{Y_{t}}, t \in \mathbb{R}_{+}$. Determine the stochastic differential equation satisfied by $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$.
d) Find the solution $\left(r_{t}\right)_{t \in \mathbb{R}_{+}}$of (4.43) in terms of the initial condition $r_{0}$.
e) Compute the conditional mean* $\mathbb{E}\left[r_{t} \mid \mathcal{F}_{u}\right]$.
f) Compute the conditional variance

$$
\operatorname{Var}\left[r_{t} \mid \mathcal{F}_{u}\right]:=\mathbb{E}\left[r_{t}^{2} \mid \mathcal{F}_{u}\right]-\left(\mathbb{E}\left[r_{t} \mid \mathcal{F}_{u}\right]\right)^{2}
$$

of $r_{t}, 0 \leqslant u \leqslant t$, where $\left(\mathcal{F}_{u}\right)_{u \in \mathbb{R}_{+}}$denotes the filtration generated by the Brownian motion $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$.
g) Compute the asymptotic mean and variance $\lim _{t \rightarrow \infty} \mathbb{E}\left[r_{t}\right]$ and $\lim _{t \rightarrow \infty} \operatorname{Var}\left[r_{t}\right]$.

Exercise 4.20 Cox-Ingersoll-Ross (CIR) model. Consider the equation

$$
\begin{equation*}
d r_{t}=\left(\alpha-\beta r_{t}\right) d t+\sigma \sqrt{r_{t}} d B_{t} \tag{4.45}
\end{equation*}
$$

modeling the variations of a short-term interest rate process $r_{t}$, where $\alpha, \beta, \sigma$ and $r_{0}$ are positive parameters and $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard Brownian motion.
a) Write down the equation (4.45) in integral form.
b) Let $u(t)=\mathbb{E}\left[r_{t}\right]$. Show, using the integral form of (4.45), that $u(t)$ satisfies the differential equation

$$
u^{\prime}(t)=\alpha-\beta u(t),
$$

and compute $\mathbb{E}\left[r_{t}\right]$ for all $t \geqslant 0$.
c) By an application of Itô's formula to $r_{t}^{2}$, show that

$$
\begin{equation*}
d r_{t}^{2}=r_{t}\left(2 \alpha+\sigma^{2}-2 \beta r_{t}\right) d t+2 \sigma r_{t}^{3 / 2} d B_{t} . \tag{4.46}
\end{equation*}
$$

d) Using the integral form of (4.46), find a differential equation satisfied by $v(t):=\mathbb{E}\left[r_{t}^{2}\right]$ and compute $\mathbb{E}\left[r_{t}^{2}\right]$ for all $t \geqslant 0$.
e) Show that

$$
\operatorname{Var}\left[r_{t}\right]=r_{0} \frac{\sigma^{2}}{\beta}\left(\mathrm{e}^{-\beta t}-\mathrm{e}^{-2 \beta t}\right)+\frac{\alpha \sigma^{2}}{2 \beta^{2}}\left(1-\mathrm{e}^{-\beta t}\right)^{2}, \quad t \geqslant 0
$$

Problem 4.21 Itô-Tanaka formula. Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard Brownian motion started at $B_{0} \in \mathbb{R}$.
a) Does the Itô formula apply to the European call option payoff function $f(x):=(x-K)^{+}$? Why?
b) For every $\varepsilon>0$, consider the approximation $f_{\varepsilon}(x)$ of $f(x):=(x-K)^{+}$ defined by

```
* One may use the Gaussian moment generating function \(\mathbb{E}\left[\mathrm{e}^{X}\right]=\mathrm{e}^{\alpha^{2} / 2}\) for \(X \simeq\) \(\mathcal{N}\left(0, \alpha^{2}\right)\).
```

$$
f_{\varepsilon}(x):= \begin{cases}x-K & \text { if } x>K+\varepsilon \\ \frac{1}{4 \varepsilon}(x-K+\varepsilon)^{2} & \text { if } K-\varepsilon<x<K+\varepsilon \\ 0 & \text { if } x<K-\varepsilon\end{cases}
$$

Plot the graph of the function $x \mapsto f_{\varepsilon}(x)$ for $\varepsilon=1$ and $K=10$.
c) Using the Itô formula, show that

$$
\begin{align*}
f_{\varepsilon}\left(B_{T}\right)= & f_{\varepsilon}\left(B_{0}\right)+\int_{0}^{T} f_{\varepsilon}^{\prime}\left(B_{t}\right) d B_{t}  \tag{4.47}\\
& +\frac{1}{4 \varepsilon} \ell\left(\left\{t \in[0, T]: K-\varepsilon<B_{t}<K+\varepsilon\right\}\right)
\end{align*}
$$

where $\ell$ denotes the measure of time length (Lebesgue measure) in $\mathbb{R}$.
d) Show that $\lim _{\varepsilon \rightarrow 0}\left\|\mathbb{1}_{[K, \infty)}(\cdot)-f_{\varepsilon}^{\prime}(\cdot)\right\|_{L^{2}\left(\mathbb{R}_{+}\right)}=0$.
e) Show, using the Itô isometry,* that the limit

$$
\mathcal{L}_{[0, T]}^{K}:=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \ell\left(\left\{t \in[0, T]: K-\varepsilon<B_{t}<K+\varepsilon\right\}\right)
$$

exists in $L^{2}(\Omega)$, and prove the Itô-Tanaka formula

$$
\begin{equation*}
\left(B_{T}-K\right)^{+}=\left(B_{0}-K\right)^{+}+\int_{0}^{T} \mathbb{1}_{[K, \infty)}\left(B_{t}\right) d B_{t}+\frac{1}{2} \mathcal{L}_{[0, T]}^{K} \tag{4.48}
\end{equation*}
$$

The quantity $\mathcal{L}_{[0, T]}^{K}$ is called the local time spent by Brownian motion at the level $K$.

Problem 4.22 Lévy's construction of Brownian motion. The goal of this problem is to prove the existence of standard Brownian motion $\left(B_{t}\right)_{t \in[0,1]}$ as a stochastic process satisfying the four properties of Definition 4.1, i.e.:

1. $B_{0}=0$ almost surely,
2. The sample trajectories $t \mapsto B_{t}$ are continuous, with probability 1.
3. For any finite sequence of times $t_{0}<t_{1}<\cdots<t_{n}$, the increments

$$
B_{t_{1}}-B_{t_{0}}, B_{t_{2}}-B_{t_{1}}, \ldots, B_{t_{n}}-B_{t_{n-1}}
$$

are independent.
4. For any given times $0 \leqslant s<t, B_{t}-B_{s}$ has the Gaussian distribution $\mathcal{N}(0, t-s)$ with mean zero and variance $t-s$.
${ }^{*}$ Hint: Show that $\lim _{\varepsilon \rightarrow 0} \mathbb{E}\left[\int_{0}^{T}\left(\mathbb{1}_{[K, \infty)}\left(B_{t}\right)-f_{\varepsilon}^{\prime}\left(B_{t}\right)\right)^{2} d t\right]=0$.

The construction will proceed by the linear interpolation scheme illustrated in Figure 4.10. We work on the space $\mathcal{C}_{0}([0,1])$ of continuous functions on $[0,1]$ started at 0 , with the norm

$$
\|f\|_{\infty}:=\operatorname{Max}_{t \in[0,1]}|f(t)|
$$

and the distance

$$
\|f-g\|_{\infty}:=\operatorname{Max}_{t \in[0,1]}|f(t)-g(t)| .
$$

The following ten questions are interdependent.
a) Show that for any Gaussian random variable $X \simeq \mathcal{N}\left(0, \sigma^{2}\right)$, we have

$$
\mathbb{P}(|X| \geqslant \varepsilon) \leqslant \frac{\sigma}{\varepsilon \sqrt{\pi / 2}} \mathrm{e}^{-\varepsilon^{2} /\left(2 \sigma^{2}\right)}, \quad \varepsilon>0
$$

Hint: Start from the inequality $\mathbb{E}\left[(X-\varepsilon)^{+}\right] \geqslant 0$ and compute the lefthand side.
b) Let $X$ and $Y$ be two independent centered Gaussian random variables with variances $\alpha^{2}$ and $\beta^{2}$. Show that the conditional distribution

$$
\mathbb{P}(X \in d x \mid X+Y=z)
$$

of $X$ given $X+Y=z$ is Gaussian with mean $\alpha^{2} z /\left(\alpha^{2}+\beta^{2}\right)$ and variance $\alpha^{2} \beta^{2} /\left(\alpha^{2}+\beta^{2}\right)$.

Hint: Use the definition

$$
\mathbb{P}(X \in d x \mid X+Y=z):=\frac{\mathbb{P}(X \in d x \text { and } X+Y \in d z)}{\mathbb{P}(X+Y \in d z)}
$$

and the formulas
$d \mathbb{P}(X \leqslant x):=\frac{1}{\sqrt{2 \pi \alpha^{2}}} \mathrm{e}^{-x^{2} /\left(2 \alpha^{2}\right)} d x, \quad d \mathbb{P}(Y \leqslant x):=\frac{1}{\sqrt{2 \pi \beta^{2}}} \mathrm{e}^{-x^{2} /\left(2 \beta^{2}\right)} d x$,
where $d x$ (resp. $d y$ ) represents a "small" interval $[x, x+d x]$ (resp. $[y, y+$ $d y]$ ).
c) Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$denote a standard Brownian motion and let $0<u<v$. Give the distribution of $B_{(u+v) / 2}$ given that $B_{u}=x$ and $B_{v}=y$.

Hint: Note that given that $B_{u}=x$, the random variable $B_{v}$ can be written as

$$
\begin{equation*}
B_{v}=\left(B_{v}-B_{(u+v) / 2}\right)+\left(B_{(u+v) / 2}-B_{u}\right)+x \tag{4.49}
\end{equation*}
$$

and apply the result of Question (b) after identifying $X$ and $Y$ in the above decomposition (4.49).
d) Consider the random sequences
with $Z_{0}^{(n)}=0, n \geqslant 0$, defined recursively as
i) $Z_{1}^{(0)} \simeq \mathcal{N}(0,1)$,
ii) $Z_{1 / 2}^{(1)} \simeq \frac{Z_{0}^{(0)}+Z_{1}^{(0)}}{2}+\mathcal{N}(0,1 / 4)$,
iii) $Z_{1 / 4}^{(2)} \simeq \frac{Z_{0}^{(1)}+Z_{1 / 2}^{(1)}}{2}+\mathcal{N}(0,1 / 8), \quad Z_{3 / 4}^{(2)} \simeq \frac{Z_{1 / 2}^{(1)}+Z_{1}^{(0)}}{2}+\mathcal{N}(0,1 / 8)$,
and more generally
$Z_{(2 k+1) / 2^{n+1}}^{(n+1)}=\frac{Z_{k / 2^{n}}^{(n)}+Z_{(k+1) / 2^{n}}^{(n)}}{2}+\mathcal{N}\left(0,1 / 2^{n+2}\right), \quad k=0,1, \ldots, 2^{n}-1$,
where $\mathcal{N}\left(0,1 / 2^{n+2}\right)$ is an independent centered Gaussian sample with variance $1 / 2^{n+2}$, and $Z_{k / 2^{n}}^{(n+1)}:=Z_{k / 2^{n}}^{(n)}, k=0,1, \ldots, 2^{n}$.
In what follows we denote by $\left(Z_{t}^{(n)}\right)_{t \in[0,1]}$ the continuous-time random path obtained by linear interpolation of the sequence points in $\left(Z_{k / 2^{n}}^{(n)}\right)_{k=0,1, \ldots, 2^{n}}$.
Draw a sample of the first four linear interpolations $\left(Z_{t}^{(0)}\right)_{t \in[0,1]},\left(Z_{t}^{(1)}\right)_{t \in[0,1]}$, $\left(Z_{t}^{(2)}\right)_{t \in[0,1]},\left(Z_{t}^{(3)}\right)_{t \in[0,1]}$, and label the values of $Z_{k / 2^{n}}^{(n)}$ on the graphs for $k=0,1, \ldots, 2^{n}$ and $n=0,1,2,3$.
e) Using an induction argument, explain why for all $n \geqslant 0$ the sequence

$$
Z^{(n)}=\left(0, Z_{1 / 2^{n}}^{(n)}, Z_{2 / 2^{n}}^{(n)}, Z_{3 / 2^{n}}^{(n)}, Z_{4 / 2^{n}}^{(n)}, \ldots, Z_{1}^{(n)}\right)
$$

has same distribution as the sequence

$$
B^{(n)}:=\left(B_{0}, B_{1 / 2^{n}}, B_{2 / 2^{n}}, B_{3 / 2^{n}}, B_{4 / 2^{n}}, \ldots, B_{1}\right)
$$

Hint: Compare the constructions of Questions (c) and (d) and note that under the above linear interpolation, we have

$$
Z_{(2 k+1) / 2^{n+1}}^{(n)}=\frac{Z_{k / 2^{n}}^{(n)}+Z_{(k+1) / 2^{n}}^{(n)}}{2}, \quad k=0,1, \ldots, 2^{n}-1
$$

f) Show that for any $\varepsilon_{n}>0$ we have

$$
\mathbb{P}\left(\left\|Z^{(n+1)}-Z^{(n)}\right\|_{\infty} \geqslant \varepsilon_{n}\right) \leqslant 2^{n} \mathbb{P}\left(\left|Z_{1 / 2^{n+1}}^{(n+1)}-Z_{1 / 2^{n+1}}^{(n)}\right| \geqslant \varepsilon_{n}\right)
$$

Hint: Use the inequality

$$
\mathbb{P}\left(\bigcup_{k=0}^{2^{n}-1} A_{k}\right) \leqslant \sum_{k=0}^{2^{n}-1} \mathbb{P}\left(A_{k}\right)
$$

for a suitable choice of events $\left(A_{k}\right)_{k=0,1, \ldots, 2^{n}-1}$.
g) Use the results of Questions (a) and (f) to show that for any $\varepsilon_{n}>0$ we have

$$
\mathbb{P}\left(\left\|Z^{(n+1)}-Z^{(n)}\right\|_{\infty} \geqslant \varepsilon_{n}\right) \leqslant \frac{2^{n / 2}}{\varepsilon_{n} \sqrt{2 \pi}} \mathrm{e}^{-\varepsilon_{n}^{2} 2^{n+1}}
$$

h) Taking $\varepsilon_{n}=2^{-n / 4}$, show that

$$
\mathbb{P}\left(\sum_{n \geqslant 0}\left\|Z^{(n+1)}-Z^{(n)}\right\|_{\infty}<\infty\right)=1
$$

Hint: Show first that

$$
\sum_{n \geqslant 0} \mathbb{P}\left(\left\|Z^{(n+1)}-Z^{(n)}\right\|_{\infty} \geqslant 2^{-n / 4}\right)<\infty
$$

and apply the Borel-Cantelli lemma.
i) Show that with probability one, the sequence $\left\{\left(Z_{t}^{(n)}\right)_{t \in[0,1]}, n \geqslant 1\right\}$ converges uniformly on $[0,1]$ to a continuous (random) function $\left(Z_{t}\right)_{t \in[0,1]}$.

Hint: Use the fact that $\mathcal{C}_{0}([0,1])$ is a complete space for the $\|\cdot\|_{\infty}$ norm.
j) Argue that the limit $\left(Z_{t}\right)_{t \in[0,1]}$ is a standard Brownian motion on $[0,1]$ by checking the four relevant properties.

Problem 4.23 Consider $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$a standard Brownian motion, and for any $n \geqslant 1$ and $T>0$, define the discretized quadratic variation

$$
Q_{T}^{(n)}:=\sum_{k=1}^{n}\left(B_{k T / n}-B_{(k-1) T / n}\right)^{2}, \quad n \geqslant 1
$$

a) Compute $\mathbb{E}\left[Q_{T}^{(n)}\right], n \geqslant 1$.
b) Compute $\operatorname{Var}\left[Q_{T}^{(n)}\right], n \geqslant 1$.
c) Show that

$$
\lim _{n \rightarrow \infty} Q_{T}^{(n)}=T
$$

where the limit is taken in $L^{2}(\Omega)$, that is, show that

$$
\lim _{n \rightarrow \infty}\left\|Q_{T}^{(n)}-T\right\|_{L^{2}(\Omega)}=0
$$

where

$$
\left\|Q_{T}^{(n)}-T\right\|_{L^{2}(\Omega)}:=\sqrt{\mathbb{E}\left[\left(Q_{T}^{(n)}-T\right)^{2}\right]}, \quad n \geqslant 1
$$

d) By the result of Question (c), show that the limit

$$
\int_{0}^{T} B_{t} d B_{t}:=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(B_{k T / n}-B_{(k-1) T / n}\right) B_{(k-1) T / n}
$$

exists in $L^{2}(\Omega)$, and compute it.
Hint: Use the identity

$$
(x-y) y=\frac{1}{2}\left(x^{2}-y^{2}-(x-y)^{2}\right), \quad x, y \in \mathbb{R}
$$

e) Consider the modified quadratic variation defined by

$$
\widetilde{Q}_{T}^{(n)}:=\sum_{k=1}^{n}\left(B_{(k-1 / 2) T / n}-B_{(k-1) T / n}\right)^{2}, \quad n \geqslant 1
$$

Compute the limit $\lim _{n \rightarrow \infty} \widetilde{Q}_{T}^{(n)}$ in $L^{2}(\Omega)$ by repeating the steps of Questions (a)-(c).
f) By the result of Question (e), show that the limit

$$
\int_{0}^{T} B_{t} \circ d B_{t}:=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(B_{k T / n}-B_{(k-1) T / n}\right) B_{(k-1 / 2) T / n}
$$

exists in $L^{2}(\Omega)$, and compute it.

Hint: Use the identities

$$
(x-y) y=\frac{1}{2}\left(x^{2}-y^{2}-(x-y)^{2}\right)
$$

and

$$
(x-y) x=\frac{1}{2}\left(x^{2}-y^{2}+(x-y)^{2}\right), \quad x, y \in \mathbb{R} .
$$

g) More generally, by repeating the steps of Questions (e) and (f), show that for any $\alpha \in[0,1]$ the limit

$$
\int_{0}^{T} B_{t} \circ d^{\alpha} B_{t}:=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(B_{k T / n}-B_{(k-1) T / n}\right) B_{(k-\alpha) T / n}
$$

exists in $L^{2}(\Omega)$, and compute it.
h) Comparison with deterministic calculus. Compute the limit

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}(k-\alpha) \frac{T}{n}\left(k \frac{T}{n}-(k-1) \frac{T}{n}\right)
$$

for all values of $\alpha$ in $[0,1]$.

Exercise 4.24 Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard Brownian motion generating the information flow $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$.
a) Let $0 \leqslant t \leqslant T$. What is the probability distribution of $B_{T}-B_{t}$ ?
b) From the answer to Exercise A.4-(c), show that

$$
\mathbb{E}\left[\left(B_{T}\right)^{+} \mid \mathcal{F}_{t}\right]=\sqrt{\frac{T-t}{2 \pi}} \mathrm{e}^{-\left(B_{t}\right)^{2} /(2(T-t))}+B_{t} \Phi\left(\frac{B_{t}}{\sqrt{T-t}}\right)
$$

$0 \leqslant t \leqslant T$, where $\Phi$ denotes the standard Gaussian cumulative distribution function. Hint: Use the time splitting decomposition $B_{T}=$ $B_{T}-B_{t}+B_{t}$.
c) Let $\sigma>0, \nu \in \mathbb{R}$, and $X_{t}:=\sigma B_{t}+\nu t, t \geqslant 0$. Compute $\mathrm{e}^{X_{t}}$ by applying the Itô formula
$f\left(X_{t}\right)=f\left(X_{0}\right)+\int_{0}^{t} u_{s} \frac{\partial f}{\partial x}\left(X_{s}\right) d B_{s}+\int_{0}^{t} v_{s} \frac{\partial f}{\partial x}\left(X_{s}\right) d s+\frac{1}{2} \int_{0}^{t} u_{s}^{2} \frac{\partial^{2} f}{\partial x^{2}}\left(X_{s}\right) d s$
to $f(x)=\mathrm{e}^{x}$, where $X_{t}$ is written as $X_{t}=X_{0}+\int_{0}^{t} u_{s} d B_{s}+\int_{0}^{t} v_{s} d s$, $t \geqslant 0$.
d) Let $S_{t}=\mathrm{e}^{X_{t}}, t \geqslant 0$, and $r>0$. For which value of $\nu$ does $\left(S_{t}\right)_{t \in \mathbb{R}_{+}}$satisfy the stochastic differential equation

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d B_{t} \quad ?
$$

Exercise 4.25 From the answer to Exercise A.4-(c), show that for any $\beta \in \mathbb{R}$ we have

$$
\begin{aligned}
& \mathbb{E}\left[\left(\beta-B_{T}\right)^{+} \mid \mathcal{F}_{t}\right]=\sqrt{\frac{T-t}{2 \pi}} \mathrm{e}^{-\left(\beta-B_{t}\right)^{2} /(2(T-t))}+\left(\beta-B_{t}\right) \Phi\left(\frac{\beta-B_{t}}{\sqrt{T-t}}\right) \\
& 0 \leqslant t \leqslant T
\end{aligned}
$$

Hint: Use the time splitting decomposition $B_{T}=B_{T}-B_{t}+B_{t}$.


[^0]:    * The animation works in Acrobat Reader on the entire pdf file.

[^1]:    * The animation works in Acrobat Reader on the entire pdf file.

[^2]:    * The animation works in Acrobat Reader on the entire pdf file.
    ${ }^{\dagger}$ Download the corresponding $\mathbb{R}$ code or the IPython notebook that can be run here or here.

[^3]:    * Download the corresponding IPython notebook that can be run here or here.
    ${ }^{\dagger}$ The animation works in Acrobat Reader on the entire pdf file.

[^4]:    * The animation works in Acrobat Reader on the entire pdf file.

[^5]:    * See MH3100 Real Analysis I.
    $\dagger$ The triangle inequality $\left\|f_{k}-f_{n}\right\|_{L^{2}([0, T])} \leqslant\left\|f_{k}-f\right\|_{L^{2}([0, T])}+\left\|f-f_{n}\right\|_{L^{2}([0, T])}$ follows from the Minkowski inequality.

[^6]:    * This means that the function $f$ is continuously differentiable on $[0, T]$.

[^7]:    * The animation works in Acrobat Reader on the entire pdf file.

[^8]:    * This means that $f$ is twice continuously differentiable on $[0, T]$.

