
Chapter 15
American Options

American options are financial derivatives that can be exercised at any time
before maturity, in contrast to European options which have fixed maturities.
The prices of American options are evaluated as an optimization problem, in
which one has to find the optimal time to exercise in order to maximize the
claim option payoff.
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15.1 Perpetual American Put Options

The price of an American put option with finite expiration time T > 0 and
strike price K can be expressed as the expected value of its discounted payoff:

f(t,St) = Sup
t⩽τ⩽T

τ Stopping time

E∗[ e−(τ−t)r(K − Sτ )
+
∣∣St],

under the risk-neutral probability measure P∗, where the supremum is taken
over stopping times between t and a fixed maturity T . Similarly, the price of
a finite expiration American call option with strike price K is expressed as

f(t,St) = Sup
t⩽τ⩽T

τ Stopping time

E∗[ e−(τ−t)r(Sτ −K)+
∣∣St].

Finite expiration American options can be found for example on the SPDR
S&P 500 ETF Trust (SPY) exchange-traded fund. In this section we take

" 529

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

T = +∞, in which case we refer to these options as perpetual options, and
the corresponding put and call options are respectively priced as

f(t,St) = Sup
τ⩾t

τ Stopping time

E∗[ e−(τ−t)r(K − Sτ )
+
∣∣St],

and
f(t,St) = Sup

τ⩾t
τ Stopping time

E∗[ e−(τ−t)r(Sτ −K)+
∣∣St].

Two-choice optimal stopping at a fixed price level for perpetual
put options

In this section we consider the pricing of perpetual put options. Given L ∈
(0,K) a fixed price, consider the following choices for the exercise of a put
option with strike price K:

1. If St ⩽ L, then exercise at time t.

2. Otherwise if St > L, wait until the first hitting time

τL := inf{u ⩾ t : Su ⩽ L} (15.1)

of the level L > 0, and exercise the option at time τL if τL < ∞.

Note that by definition of (15.1) we have τL = t if St ⩽ L.

In case St ⩽ L, the payoff will be

(K − St)
+ = K − St

since K > L ⩾ St, however in this case one would buy the option at price
K − St only to exercise it immediately for the same amount.

In case St > L, as r > 0 the price of the option is given by

fL(t,St) = E∗[ e−(τL−t)r(K − SτL)
+
∣∣St]

= E∗[ e−(τL−t)r(K − SτL)
+
1{τL<∞}

∣∣St]
= E∗[ e−(τL−t)r(K −L)+1{τL<∞}

∣∣St]
= (K −L)E∗[ e−(τL−t)r ∣∣St]. (15.2)

We note that the starting date t does not matter when pricing perpetual
options, which have an infinite time horizon. Hence, fL(t,x) = fL(x), x > 0,
does not depend on t ∈ R+, and the pricing of the perpetual put option can
be performed at t = 0. Recall that the underlying asset price is written as

St = S0 ert+σB̂t−σ2t/2, t ⩾ 0, (15.3)
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Notes on Stochastic Finance

where (B̂t)t∈R+ is a standard Brownian motion under the risk-neutral prob-
ability measure P∗, r is the risk-free interest rate, and σ > 0 is the volatility
coefficient.
Lemma 15.1. Assume that r > 0. We have

E∗[ e−(τL−t)r ∣∣ St = x
]
=
( x
L

)−2r/σ2

, x ⩾ L. (15.4)

Proof. We take t = 0 in (15.4) without loss of generality. We note that from
(15.3), for all λ ∈ R we have

(St)
λ = eλrt+λσB̂t−λσ2t/2, t ⩾ 0,

and the process
(
Z
(λ)
t

)
t⩾0 defined as

Z
(λ)
t := (S0)

λ eλσB̂t−λ2σ2t/2 = (St)
λ e−(λr−λ(1−λ)σ2/2)t, t ⩾ 0, (15.5)

is a martingale under the risk-neutral probability measure P∗. Choosing λ ∈
R such that

r = rλ− λ(1 − λ)
σ2

2 , (15.6)

we have
Z
(λ)
t = (St)

λ e−rt, t ⩾ 0. (15.7)

The equation (15.6) rewrites as

0 = λ2σ
2

2 + λ

(
r− σ2

2

)
− r =

σ2

2

(
λ+

2r
σ2

)
(λ− 1), (15.8)

with solutions
λ+ = 1 and λ− = − 2r

σ2 .

Choosing the negative solution∗ λ− = −2r/σ2 < 0 and noting that St ⩾ L
for all t ∈ [0, τL], we obtain

0 ⩽ Z
(λ−)
t = e−rt(St)

λ− ⩽ e−rtLλ− ⩽ Lλ− , 0 ⩽ t ⩽ τL, (15.9)

since r > 0. Therefore we have limt→∞ Z
(λ−)
t = 0, and since limt→∞ Z

(λ−)
τL∧t =

Z
(λ−)
τL on {τL < ∞}, using (15.7), we find

Lλ−E∗[ e−rτL
]
= E∗

[
e−rτLLλ−1{τL<∞}

]
∗ The bound (15.9) does not hold for the positive solution λ+ = 1.
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= E∗
[

e−rτL
(
SτL

)λ−
1{τL<∞}

]
= E∗

[
Z
(λ−)
τL 1{τL<∞}

]
= E∗[

1{τL<∞} lim
t→∞

Z
(λ−)
τL∧t

]
= E∗[ lim

t→∞
Z
(λ−)
τL∧t

]
(15.10)

= lim
t→∞

E∗[Z(λ−)
τL∧t

]
(15.11)

= lim
t→∞

E∗[Z(λ−)
0

]
= (S0)

λ− ,

where by (15.9) we applied the dominated convergence theorem from (15.10)
to (15.11). Hence, we find

E∗[ e−rτL
∣∣S0 = x

]
=
( x
L

)−2r/σ2

, x ⩾ L.

Note also that by (14.15) we have P(τL < ∞) = 1 if r − σ2/2 ⩽ 0, and
P(τL = +∞) > 0 if r− σ2/2 > 0. □

Next, we apply Lemma 15.1 in order to price the perpetual American put
option.
Proposition 15.2. Assume that r > 0. We have

fL(x) = E∗[ e−(τL−t)r(K − SτL)
+
∣∣ St = x

]
=


K − x, 0 < x ⩽ L,

(K −L)
( x
L

)−2r/σ2

, x ⩾ L.

Proof. We take t = 0 without loss of generality.
i) The result is obvious for S0 = x ⩽ L since in this case we have τL = t = 0
and SτL = S0 = x, so that we only focus on the case x > L.
ii) Next, we consider the case S0 = x > L. We have

E∗[ e−rτL(K − SτL)
+
∣∣S0 = x

]
= E∗[

1{τL<∞} e−rτL(K − SτL)
+
∣∣S0 = x

]
= E∗[

1{τL<∞} e−rτL(K −L)
∣∣S0 = x

]
= (K −L)E∗[ e−rτL

∣∣S0 = x
]
,

and we conclude by the expression of E∗[ e−rτL
∣∣S0 = x

]
given in Lemma 15.1.

□
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We note that taking L = K would yield a payoff always equal to 0 for the
option holder, hence the value of L should be strictly lower than K. On the
other hand, if L = 0 the value of τL will be infinite almost surely, hence the
option price will be 0 when r ⩾ 0 from (15.2). Therefore there should be an
optimal value L∗, which should be strictly comprised between 0 and K.

Figure 15.1 shows for K = 100 that there exists an optimal value L∗ =
85.71 which maximizes the option price for all values of the underlying asset
price.
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Fig. 15.1: American put by exercising at τL for different values of L and K = 100.

Smooth pasting In order to compute L∗ we observe that, geometrically, the
slope of fL(x) at x = L∗ is equal to −1, i.e.

f ′
L∗(L∗) = − 2r

σ2 (K −L∗)
(L∗)−2r/σ2−1

(L∗)−2r/σ2 = −1, (15.12)

i.e.
2r
σ2 (K −L∗) = L∗,

or

L∗ =
2r

2r+ σ2K < K. (15.13)

We note that L∗ tends to zero as σ becomes large or r becomes small, and
that L∗ tends to K when σ becomes small.

The same conclusion can be reached from the vanishing of the derivative of
L 7→ fL(x):

∂fL(x)

∂L
= −

( x
L

)−2r/σ2

+
2r
σ2
K −L

L

( x
L

)−2r/σ2

= 0,
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cf. page 351 of Shreve (2004). The next Figure 15.2 is a 2-dimensional ani-
mation that also shows the optimal value L∗ of L.

Fig. 15.2: Animated graph of American put prices depending on L with K = 100.∗

The next Figure 15.3 gives another view of the put option prices according
to different values of L, with the optimal value L∗ = 85.71.
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Fig. 15.3: Option price as a function of L and of the underlying asset price.

In Figure 15.4, which is based on the stock price of HSBC Holdings (0005.HK)
over year 2009 as in Figures 6.8-6.15, the optimal exercise strategy for an
American put option with strike price K=$77.67 would have been to exercise
whenever the underlying asset price goes above L∗ = $62, i.e. at approxi-
mately 54 days, for a payoff of $25.67. Exercising after a longer time, e.g. 85
days, could yield an even higher payoff of over $65, however, this choice is not
∗ The animation works in Acrobat Reader on the entire pdf file.
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made because decisions are taken based on existing (past) information, and
optimization is in expected value (or average) over all possible future paths.
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Fig. 15.4: Path of the American put option price on the HSBC stock.

See Exercise 15.6 for the pricing of perpetual American put options with
dividends.

15.2 PDE Method for Perpetual Put Options

Exercise. Check by hand calculations that the function fL∗ defined as

fL∗(x) :=


K − x, 0 < x ⩽ L∗ =

2r
2r+ σ2K,

Kσ2

2r+ σ2

(
2r+ σ2

2r
x

K

)−2r/σ2

, x ⩾ L∗ =
2r

2r+ σ2K,

(15.14)
satisfies the Partial Differential Equation (PDE)

−rfL∗(x) + rxf ′
L∗(x) +

1
2σ

2x2f ′′
L∗(x) = −rK1{x⩽L∗}

=

{
−rK < 0, 0 < x ⩽ L∗ < K, [Exercise now]

0, x > L∗. [Wait]
(15.15)

in addition to the conditions
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 fL∗(x) = K − x, 0 < x ⩽ L∗ < K, [Exercise now]

fL∗(x) > (K − x)+, x > L∗, [Wait]

see (15.14).

The above statements can be summarized in the following proposition.

Proposition 15.3. The function fL∗ satisfies the following set of differential
inequalities, or variational differential equation:

fL∗(x) ⩾ (K − x)+,

rxf ′
L∗(x) +

σ2

2 x2f ′′
L∗(x) ⩽ rfL∗(x),(

rfL∗(x) − rxf ′
L∗(x) − σ2

2 x2f ′′
L∗(x)

)
(fL∗(x) − (K − x)+) = 0.

(15.16a)

(15.16b)

(15.16c)

The equation (15.16c) admits an interpretation in terms of absence of arbi-
trage, as shown below. By (15.15) and Itô’s formula applied under the smooth
fit relation (15.12) to

dSt = rStdt+ σStdB̂t,

the discounted portfolio value process

f̃L∗(St) = e−rtfL∗(St), t ⩾ 0,

satisfies

d
(
f̃L∗(St)

)
=

(
−rfL∗(St) + rStf

′
L∗(St) +

1
2σ

2S2
t f

′′
L∗(St)

)
e−rtdt+ e−rtσStf

′
L∗(St)dB̂t

= −1{St⩽L∗}rK e−rtdt+ e−rtσStf
′
L∗(St)dB̂t

= −1{fL∗ (St)=(K−St)+}rK e−rtdt+ e−rtσStf
′
L∗(St)dB̂t, (15.17)

hence we have the relation

f̃L∗(ST ) − f̃L∗(St)

= −rK
w T
t
1{fL∗ (Su)⩽(K−Su)+} e−rudu+

w T
t

e−ruσSuf
′
L∗(Su)dB̂u,

for some maturity time T > 0, which implies

E∗[f̃L∗(ST ) − f̃L∗(St) | Ft
]
= E∗[f̃L∗(ST ) | Ft

]
− f̃L∗(St)

= E∗
[
−rK

w T
t
1{fL∗ (Su)⩽(K−Su)+} e−rudu+

w T
t

e−ruσSuf
′
L∗(Su)dB̂u

∣∣∣ Ft
]
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= −E∗
[
rK

w T
t
1{fL∗ (Su)⩽(K−Su)+} e−rudu

∣∣∣ Ft
]

,

hence the following decomposition of the perpetual American put price into
the sum of a European put price and an early exercise premium:

f̃L∗(St)

= E∗[f̃L∗(ST ) | Ft
]
+ rKE∗

[w T
t
1{fL∗ (Su)⩽(K−Su)+} e−rudu

∣∣∣Ft]
⩾ e−rTE∗[(K − ST )

+ | Ft
]︸ ︷︷ ︸

European put price

+ rKE∗
[w T

t
1{Su⩽L∗} e−rudu

∣∣∣Ft]︸ ︷︷ ︸
Early exercise premium

,

(15.18)

0 ⩽ t ⩽ T , see also Theorem 8.4.1 in § 8.4 in Elliott and Kopp (2005) on early
exercise premiums. From (15.17) we also make the following observations.

a) From Equation (15.16c), f̃L∗(St) is a martingale when

fL∗(St) > (K − St)
+, i.e. St > L∗, [Wait]

and in this case the expected rate of return of the hedging portfolio value
fL∗(St) equals the rate r of the riskless asset, as

d
(
f̃L∗(St)

)
= e−rtσStf

′
L∗(St)dB̂t,

or

d
(
fL∗(St)

)
= d

(
ertf̃L∗(St)

)
= rfL∗(St)dt+ σStf

′
L∗(St)dB̂t,

and the investor prefers to wait.

b) On the other hand, if

fL∗(St) = (K − St)
+, i.e. 0 < St < L∗, [Exercise now]

the return of the hedging portfolio becomes lower than r as d
(
f̃L∗(St)

)
=

−rK e−rtdt+ e−rtσStf ′
L∗(St)dB̂t and

d
(
fL∗(St)

)
= d

(
ertf̃L∗(St)

)
= rfL∗(St)dt− rKdt+ e−rtσStf

′
L∗(St)dB̂t.

In this case it is not worth waiting as (15.16b)-(15.16c) show that the
return of the hedging portfolio is lower than that of the riskless asset, i.e.:
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−rfL∗(St) + rStf
′
L∗(St) +

1
2σ

2S2
t f

′′
L∗(St) = −rK < 0,

exercise becomes immediate since the process f̃L∗(St) becomes a (strict)
supermartingale, and (15.16c) implies fL∗(x) = (K − x)+.

In view of the above derivation, it should make sense to assert that fL∗(St) is
the price at time t of the perpetual American put option. The next proposition
confirms that this is indeed the case, and that the optimal exercise time is
τ∗ = τL∗ .

Proposition 15.4. Assume that r > 0. The price of the perpetual American
put option is given for all t ⩾ 0 by

fL∗(St) = Sup
τ⩾t

τ Stopping time

E∗[ e−(τ−t)r(K − Sτ )
+
∣∣ St]

= E∗[ e−(τL∗ −t)r(K − SτL∗ )
+
∣∣ St]

=


K − St, 0 < St ⩽ L∗,

(K −L∗)

(
St
L∗

)−2r/σ2

=
Kσ2

2r+ σ2

(
2r+ σ2

2r
St
K

)−2r/σ2

, St ⩾ L∗.

Proof. i) Since the drift

−rfL∗(St) + rStf
′
L∗(St) +

1
2σ

2S2
t f

′′
L∗(St)

in Itô’s formula (15.17) is nonpositive by the inequality (15.16b), the dis-
counted portfolio value process

u 7→ e−rufL∗(Su), u ∈ [t, ∞),

is a supermartingale. As a consequence, for all (a.s. finite) stopping times
τ ∈ [t, ∞) we have, by (14.13),

e−rtfL∗(St) ⩾ E∗[ e−rτfL∗(Sτ )
∣∣St] ⩾ E∗[ e−rτ (K − Sτ )

+
∣∣St],

from (15.16a), which implies

e−rtfL∗(St) ⩾ Sup
τ⩾t

τ Stopping time

E∗[ e−rτ (K − Sτ )
+
∣∣St]. (15.19)

ii) The converse inequality is obvious from Proposition 15.2, as

fL∗(St) = E∗[ e−(τL∗ −t)r(K − SτL∗ )
+
∣∣St]
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⩽ Sup
τ⩾t

τ Stopping time

E∗[ e−(τ−t)r(K − Sτ )
+
∣∣St], (15.20)

since τL∗ is a stopping time larger than t ∈ R+. The inequalities (15.19) and
(15.20) allow us to derive the equality

fL∗(St) = Sup
τ⩾t

τ Stopping time

E∗[ e−(τ−t)r(K − Sτ )
+
∣∣St].

□

Remark. We note that the converse inequality (15.20) can also be obtained
from the variational PDE (15.16a)-(15.16c) itself, without relying on Propo-
sition 15.2. For this, taking τ = τL∗ we note that the process

u 7→ e−(u∧τL∗ )rfL∗(Su∧τL∗ ), u ⩾ t,

is not only a supermartingale, it is also a martingale until exercise at time
τL∗ by (15.15) since Su∧τL∗ ⩾ L∗, hence we have

e−rtfL∗(St) = E∗[ e−(u∧τL∗ )rfL∗(Su∧τL∗ )
∣∣St], u ⩾ t,

hence after letting u tend to infinity we obtain

e−rtfL∗(St) = E∗[ e−rτL∗ fL∗(SτL∗ )
∣∣St]

= E∗[ e−rτL∗ fL∗(L∗)
∣∣St]

= E∗[ e−rτL∗ (K − SτL∗ )
+
∣∣St]

⩽ Sup
τ⩾t

τ Stopping time

E∗[ e−rτL∗ (K − SτL∗ )
+
∣∣St],

which recovers (15.20) as

e−rtfL∗(St) ⩽ Sup
τ⩾t

τ Stopping time

E∗[ e−rτ (K − Sτ )
+
∣∣St], t ⩾ 0.

15.3 Perpetual American Call Options

In this section we consider the pricing of perpetual call options.

Two-choice optimal stopping at a fixed price level for perpetual
call options

Given L > K a fixed price, consider the following choices for the exercise of
a call option with strike price K:
1. If St ⩾ L, then exercise at time t.
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2. Otherwise, wait until the first hitting time

τL = inf{u ⩾ t : Su = L}

and exercise the option and time τL.

In case St ⩾ L, the immediate exercise (or intrinsic) payoff will be

(St −K)+ = St −K,

since K < L ⩽ St.

In case St < L, as r > 0 the price of the option will be given by

fL(St) = E∗[ e−(τL−t)r(SτL −K)+
∣∣St]

= E∗[ e−(τL−t)r(SτL −K)+1{τL<∞}
∣∣St]

= E∗[ e−(τL−t)r(L−K)+
∣∣St]

= (L−K)E∗[ e−(τL−t)r ∣∣St].
Lemma 15.5. Assume that r > 0. We have

E∗[ e−rτL
]
=
S0
L

.

Proof. We only need to consider the case S0 = x < L. Note that for all
λ ∈ R, the process

(
Z
(λ)
t

)
t∈R+

defined as

Z
(λ)
t := (St)

λ e−rλt+λσ2t/2−λ2σ2t/2 = (S0)
λ eλσB̂t−λ2σ2t/2, t ⩾ 0,

defined in (15.5) is a martingale under the risk-neutral probability measure
P̃. Hence the stopped process

(
Z
(λ)
t∧τL

)
t∈R+

is a martingale and it has constant
expectation, i.e., we have

E∗[Z(λ)
t∧τL

]
= E∗[Z(λ)

0
]
= (S0)

λ, t ⩾ 0. (15.21)

Choosing λ such that

r = rλ− λ
σ2

2 + λ2σ
2

2 ,

i.e.
0 = λ2σ

2

2 + λ

(
r− σ2

2

)
− r =

σ2

2

(
λ+

2r
σ2

)
(λ− 1),

Relation (15.21) rewrites as

E∗[(St∧τL)
λ e−(t∧τL)r

]
= (S0)

λ, t ⩾ 0. (15.22)
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Choosing the positive solution∗ λ+ = 1 yields the bound

0 ⩽ Z
(λ+)
t = e−rtSt ⩽ St ⩽ L, 0 ⩽ t ⩽ τL, (15.23)

since r > 0 and St ⩽ L for all t ∈ [0, τL]. Hence we have limt→∞ Z
(λ+)
t = 0,

and since limt→∞ Z
(λ+)
τL∧t = Z

(λ+)
τL on {τL < ∞}, by (15.22)-(15.23) and the

dominated convergence theorem, we get

LE∗[ e−rτL
]
= E∗[ e−rτLSτL1{τL<∞}

]
= E∗[ lim

t→∞
e−(τL∧t)rSτL∧t

]
= E∗[ lim

t→∞
Z
(λ+)
τL∧t

]
= lim

t→∞
E∗[Z(λ+)

τL∧t
]

= lim
t→∞

E∗[Z(λ+)
0

]
= S0,

which yields
E∗[ e−rτL

]
=
S0
L

. (15.24)

Note also that by (14.17) we have P(τL < ∞) = 1 if r − σ2/2 ⩾ 0, and
P(τL = +∞) > 0 if r− σ2/2 < 0. □

Next, we apply Lemma 15.5 in order to price the perpetual American call
option.

Proposition 15.6. Assume that r > 0. The price of the perpetual American
call option is given by fL(St) when St < L, where

fL(x) =


x−K, x ⩾ L ⩾ K,

(L−K)
x

L
, 0 < x ⩽ L.

(15.25)

Proof. i) The result is obvious for S0 = x ⩾ L since in this case we have
τL = t = 0 and SτL = S0 = x, so that we only focus on the case x < L.
ii) Next, we consider the case S0 = x < L. We have

E∗[ e−rτL(SτL −K)+
∣∣S0 = x

]
= E∗[

1{τL<∞} e−rτL(SτL −K)+
∣∣S0 = x

]
= E∗[

1{τL<∞} e−rτL(L−K)
∣∣S0 = x

]
∗ The bound (15.23) does not hold for the negative solution λ− = −2r/σ2.
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= (L−K)E∗[ e−rτL
∣∣S0 = x

]
,

and we conclude by the expression of E∗[ e−rτL
∣∣S0 = x

]
given in Lemma 15.1.

□

One can check from Figures 15.5 and 15.6 that the situation completely differs
from the perpetual put option case, as there does not exist an optimal value
L∗ that would maximize the option price for all values of the underlying asset
price.
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Fig. 15.5: American call prices by exercising at τL for different values of L and K = 100.

Fig. 15.6: Animated graph of American option prices depending on L with K = 100.∗

The intuition behind this picture is that there is no upper limit above which
one should exercise the option, and in order to price the American perpetual
call option we have to let L go to infinity, i.e. the “optimal” exercise strategy
is to wait indefinitely.
∗ The animation works in Acrobat Reader on the entire pdf file.
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Fig. 15.7: American call prices for different values of L.

We check from (15.25) that

lim
L→∞

fL(x) = x− lim
L→∞

K
x

L
= x, x > 0. (15.26)

As a consequence we have the following proposition.

Proposition 15.7. Assume that r ⩾ 0. The price of the perpetual American
call option is given by

Sup
τ⩾t

τ Stopping time

E∗[ e−(τ−t)r(Sτ −K)+
∣∣ St] = St, t ⩾ 0. (15.27)

Proof. For all L > K we have

fL(St) = E∗[ e−(τL−t)r(SτL −K)+
∣∣St]

⩽ Sup
τ⩾t

τ Stopping time

E∗[ e−(τ−t)r(Sτ −K)+
∣∣St], t ⩾ 0,

hence from (15.26), taking the limit as L → ∞ yields

St ⩽ Sup
τ⩾t

τ Stopping time

E∗[ e−(τ−t)r(Sτ −K)+
∣∣St]. (15.28)

On the other hand, since u 7→ e−(u−t)rSu is a martingale under P∗, by
(14.13) and Fatou’s Lemma A.12∗ we have, for all stopping times τ ∈ [t, ∞),
∗ E[limn→∞ Fn] ⩽ limn→∞ E[Fn] for any sequence (Fn)n∈N of nonnegative random
variables, provided that the limits exist.
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E∗[ e−(τ−t)r(Sτ −K)+
∣∣St] ⩽ E∗[ e−(τ−t)rSτ

∣∣St]
= E∗[ lim

n→∞
e−(τ∧n−t)rSτ∧n

∣∣St]
⩽ lim

n→∞
E∗[ e−(τ∧n−t)rSτ∧n

∣∣St]
= lim

s→∞
St

= St, t ⩾ 0,

see also (14.13), hence

Sup
τ⩾t

τ Stopping time

E∗[ e−(τ−t)r(Sτ −K)+
∣∣St] ⩽ St, t ⩾ 0,

which shows (15.27) by (15.28). □

We may also check that since ( e−rtSt)t∈R+ is a martingale, the process t 7→
( e−rtSt −K)+ is a submartingale since the function x 7→ (x−K)+ is convex,
hence for all bounded stopping times τ such that t ⩽ τ we have

(St −K)+ ⩽ E∗[( e−(τ−t)rSτ −K)+
∣∣St] ⩽ E∗[ e−(τ−t)r(Sτ −K)+

∣∣St],
t ⩾ 0, showing that it is always better to wait than to exercise at time t,
and the optimal exercise time is τ∗ = +∞. This argument does not apply to
American put options.

See Exercise 15.8 for the pricing of perpetual American call options with
dividends.

15.4 Finite Expiration American Options

In this section we consider finite expiration American put and call options
with strike price K. The prices of such options can be expressed as

f(t,St) = Sup
t⩽τ⩽T

τ Stopping time

E∗[ e−(τ−t)r(K − Sτ )
+
∣∣St],

and
f(t,St) = Sup

t⩽τ⩽T
τ Stopping time

E∗[ e−(τ−t)r(Sτ −K)+
∣∣St].

Two-choice optimal stopping at fixed times with finite expiration

We start by considering the optimal stopping problem in a simplified set-
ting where τ ∈ {t,T} is allowed at time t to take only two values t (which
corresponds to immediate exercise) and T (wait until maturity).
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Proposition 15.8. Assume that r ⩾ 0. For any stopping time τ ∈ [t,T ], the
price of the European call option exercised at time τ satisfies the bound

(x−K)+ ⩽ E∗[ e−(τ−t)r(Sτ −K)+ | St = x], x, t > 0. (15.29)

Proof. Since the function x 7→ x+ = Max(x, 0) is convex non-decreasing
and the process ( e−rtSt − e−rtK)t⩾0 is a submartingale under P∗ since
r ⩾ 0, Proposition 14.5-(b) shows that that t 7→ ( e−rtSt − e−rtK)+ is a
submartingale by the Jensen (1906) inequality (14.3). Hence, by (14.9) ap-
plied to submartingales, for any stopping time τ ∈ [t,T ] we have

(St −K)+ = ert( e−rtSt − e−rtK)+

⩽ ertE∗[( e−rτSτ − e−rτK)+ | Ft]
= E∗[ e−(τ−t)r(Sτ −K)+ | Ft],

which yields (15.29). □

In particular, for the deterministic time τ := T ⩾ t we get

(x−K)+ ⩽ e−(T−t)rE∗[(ST −K)+ | St = x], x, t > 0.

as illustrated in Figure 15.8 using the Black-Scholes formula for European
call options, see also Figure 6.16a. In other words, taking x = St, the payoff
(St −K)+ of immediate exercise at time t is always lower than the expected
payoff e−(T−t)rE∗[(ST −K)+ | St = x] given by exercise at maturity T . As
a consequence, the optimal strategy for the investor is to wait until time T
to exercise an American call option, rather than exercising earlier at time t.
Note that the situation is completely different when r < 0, see Figure 6.17a.

Black-Scholes European call price
Payoff (x-K)+

 60 80 100 120 140

Underlying (HK$)

 0 1 2 3 4 5 6 7 8 9 10 Time to maturity T-t

 0

 10

 20

 30

 40

 50

 60

 70

 80

Fig. 15.8: Black-Scholes call option price with r = 3% > 0 vs. (x, t) 7→ (x − K)+.

More generally, it can be shown that the price of the American call option
equals the price of the corresponding European call option with maturity T ,
i.e.
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f(t,St) = e−(T−t)rE∗[(ST −K)+
∣∣St],

i.e. T is the optimal exercise date, see Proposition 15.10 below or §14.4 of
Steele (2001) for a proof.

Put options

For put options the situation is entirely different. The Black-Scholes formula
for European put options shows that the inequality

(K − x)+ ⩽ e−(T−t)rE∗[(K − ST )
+ | St = x],

does not always hold, as illustrated in Figure 15.9, see also Figure 6.16b.

Payoff (K-x)+

Black-Scholes European put price
Option price path

 90
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Underlying (HK$)
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Time to maturity T-t
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Fig. 15.9: Black-Scholes put option price with r = 3% > 0 vs. (x, t) 7→ (K − x)+.

As a consequence, the optimal exercise decision for a put option depends
on whether (K − St)+ ⩽ e−(T−t)rE∗[(K − ST )

+ | St] (in which case one
chooses to exercise at time T ) or (K − St)+ > e−(T−t)rE∗[(K − ST )

+ | St]
(in which case one chooses to exercise at time t).

A view from above of the graph of Figure 15.9 shows the existence of an opti-
mal frontier depending on time to maturity and on the price of the underlying
asset, instead of being given by a constant level L∗ as in Section 15.1, see
Figure 15.10.
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Underlying HK$

T-t
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Fig. 15.10: Optimal frontier for the exercise of a put option.

At a given time t, one will choose to exercise immediately if (St,T − t) belongs
to the blue area on the right, and to wait until maturity if (St,T − t) belongs
to the red area on the left.

When r = 0 we have L∗ = 0, and the next remark shows that in this case
it is always better to exercise an finite expiration American put option at
maturity T , see also Exercise 15.10.

Proposition 15.9. Assume that r = 0 and let ϕ : R −→ R be a nonnegative
convex function. Then the price of the finite expiration American option with
payoff function ϕ on the underlying asset price (St)t∈R+ coincides with the
corresponding vanilla option price:

f(t,St) = Sup
t⩽τ⩽T

τ Stopping time

E∗[ϕ(Sτ ) ∣∣ St] = E∗[ϕ(ST ) ∣∣ St],
i.e. the optimal strategy is to wait until the maturity time T to exercise the
option, and τ∗ = T .

Proof. Since the function ϕ is convex and (St+s)s∈[0,T−t] is a martingale
under the risk-neutral measure P∗, we know from Proposition 14.5-(a) that
the process (ϕ(St+s))s∈[0,T−t] is a submartingale. Therefore, for all (bounded)
stopping times τ comprised between t and T we have

E∗[ϕ(Sτ ) | Ft] ⩽ E∗[ϕ(ST ) | Ft],

hence it is always better to wait until time T than to exercise at time τ ∈
[t,T ], and this yields

Sup
t⩽τ⩽T

τ Stopping time

E∗[ϕ(Sτ ) ∣∣St] ⩽ E∗[ϕ(ST ) ∣∣St].
Since the constant T is a stopping time, it attains the above supremum. □
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15.5 PDE Method with Finite Expiration

Let us describe the PDE associated to American put options. After discretiza-
tion {0 = t0 < t1 < . . . < tN = T} of the time interval [0,T ], the optimal
exercise strategy for the American put option can be described as follow at
each time step:

If f(t,St) > (K − St)+, wait.

If f(t,St) = (K − St)+, exercise the option at time t.

Note that we cannot have f(t,St) < (K − St)+.

If f(t,St) > (K−St)+ the expected return of the hedging portfolio equals
the return r of the riskless asset. In this case, as in Proposition 15.3, f(t,St)
follows the Black-Scholes PDE

rf(t,St) =
∂f

∂t
(t,St) + rSt

∂f

∂x
(t,St) +

1
2σ

2S2
t
∂2f

∂x2 (t,St),

whereas if f(t,St) = (K − St)+ it is not worth waiting as the return of the
hedging portfolio is lower than that of the riskless asset:

rf(t,St) ⩾
∂f

∂t
(t,St) + rSt

∂f

∂x
(t,St) +

1
2σ

2S2
t
∂2f

∂x2 (t,St).

As a consequence, f(t,x) should solve the following variational PDE, see
Jaillet et al. (1990), Theorem 8.5.9 in Elliott and Kopp (2005) and Theorem 5
in Üstünel (2009):

f(t,x) ⩾ f(T ,x) = (K − x)+,

∂f

∂t
(t,x) + rx

∂f

∂x
(t,x) + σ2

2 x2 ∂
2f

∂x2 (t,x) ⩽ rf(t,x),

(
∂f

∂t
(t,x) + rx

∂f

∂x
(t,x) + σ2

2 x2 ∂
2f

∂x2 (t,x) − rf(t,x)
)

× (f(t,x) − (K − x)+) = 0,

(15.30a)

(15.30b)

(15.30c)

x > 0, 0 ⩽ t ⩽ T , subject to the terminal condition f(T ,x) = (K − x)+.
In other words, equality holds either in (15.30a) or in (15.30b) due to the
presence of the term (f(t,x) − (K − x)+) in (15.30c).

The optimal exercise strategy consists in exercising the put option as soon
as the equality f(u,Su) = (K − Su)+ holds, i.e. at the time
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τ∗ = T ∧ inf{u ⩾ t : f(u,Su) = (K − Su)
+},

after which the process f̃L∗(St) ceases to be a martingale and becomes a
(strict) supermartingale.

A simple procedure to compute numerically the price of an American put
option is to use a finite difference scheme while simply enforcing the condition
f(t,x) ⩾ (K − x)+ at every iteration by adding the condition

f(ti,xj) := Max(f(ti,xj), (K − xj)
+)

right after the computation of f(ti,xj).

The next Figure 15.11 shows a numerical resolution of the variational
PDE (15.30a)-(15.30c) using the above simplified (implicit) finite difference
scheme, see also Jacka (1991) for properties of the optimal boundary function.
In comparison with Figure 15.4, one can check that the PDE solution becomes
time-dependent in the finite expiration case.

Finite expiration American put price
Immediate payoff (K-x)+

L*=2r/(2r+sigma2)

 90
 100
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 0  2  4  6  8  10Time to maturity T-t
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 8
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Fig. 15.11: PDE estimates of finite expiration American put option prices.

In general, one will choose to exercise the put option when

f(t,St) = (K − St)
+,

i.e. within the blue area in Figure (15.11). We check that the optimal thresh-
old L∗ = 90.64 of the corresponding perpetual put option is within the ex-
ercise region, which is consistent since the perpetual optimal strategy should
allow one to wait longer than in the finite expiration case.

The numerical computation of the American put option price

f(t,St) = Sup
t⩽τ⩽T

τ Stopping time

E∗[ e−(τ−t)r(K − Sτ )
+
∣∣St]
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can also be done by dynamic programming and backward optimization using
the Longstaff and Schwartz (2001) (or Least Square Monte Carlo, LSM)
algorithm as in Figure 15.12.

Immediate payoff (K-x)+

Longstaff-Schwartz algorithm
L*=2r/(2r+sigma2)

 90
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 120 Underlying

 0  2  4  6  8  10Time to maturity T-t
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 16

Fig. 15.12: Longstaff-Schwartz estimates of finite expiration American put option
prices.

In Figure 15.12 above and Figure 15.13 below the optimal threshold of the
corresponding perpetual put option is again L∗ = 90.64 and falls within the
exercise region. Also, the optimal threshold is closer to L∗ for large time to
maturities, which shows that the perpetual option approximates the finite
expiration option in that situation. In the next Figure 15.13 we compare
the numerical computation of the American put option price by the finite
difference and Longstaff-Schwartz methods.

 0
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 10

 90  100  110  120

Op
tio

n 
pr

ice

Underlying

Longstaff-Schwartz algorithm
Implicit finite differences
Immediate payoff (K-x)+

Fig. 15.13: Comparison between Longstaff-Schwartz and finite differences.

It turns out that, although both results are very close, the Longstaff-Schwartz
method performs better in the critical area close to exercise at it yields the
expected continuously differentiable solution, and the simple numerical PDE
solution tends to underestimate the optimal threshold. Also, a small error
in the values of the solution translates into a large error on the value of the
optimal exercise threshold.
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The fOptions package in contains a finite expiration American put option
pricer based on the Barone-Adesi and Whaley (1987) approximation, see
Exercise 15.4, however, the approximation is valid only for certain parameter
ranges. See also Allegretto et al. (1995) for a related approximation of the
early exercise premium (15.18).

The finite expiration American call option

In the next proposition we compute the price of a finite expiration American
call option with an arbitrary convex payoff function ϕ.

Proposition 15.10. Assume that r ⩾ 0 and let ϕ : R −→ R be a nonneg-
ative convex function such that ϕ(0) = 0. The price of the finite expiration
American call option with payoff function ϕ on the underlying asset price
(St)t∈R+ is given by

f(t,St) = Sup
t⩽τ⩽T

τ Stopping time

E∗[ e−(τ−t)rϕ(Sτ )
∣∣ St] = e−(T−t)rE∗[ϕ(ST ) ∣∣ St],

i.e. the optimal strategy is to wait until the maturity time T to exercise the
option, and τ∗ = T .

Proof. Since the function ϕ is convex and ϕ(0) = 0, we have

ϕ(px) = ϕ((1 − p) × 0 + px) ⩽ (1 − p) × ϕ(0) + pϕ(x) = pϕ(x), (15.31)

for all p ∈ [0, 1] and x ⩾ 0. Next, taking p := e−rs in (15.31) we note that

e−rsE∗[ϕ(St+s) ∣∣Ft] ⩾ e−rsϕ
(
E∗[St+s ∣∣Ft])

⩾ ϕ
(

e−rsE∗[St+s ∣∣Ft])
= ϕ(St),

where we used Jensen’s inequality Proposition 14.4 applied to the convex
function ϕ. Hence the process s 7→ e−rsϕ(St+s) is a submartingale, and by the
optional stopping theorem for submartingales, see (14.9), for all (bounded)
stopping times τ comprised between t and T we have

E∗[ e−(τ−t)rϕ(Sτ ) | Ft] ⩽ e−(T−t)rE∗[ϕ(ST ) | Ft].

In other words, it is always better to wait until time T than to exercise at
time τ ∈ [t,T ], and this yields

Sup
t⩽τ⩽T

τ Stopping time

E∗[ e−(τ−t)rϕ(Sτ )
∣∣St] ⩽ e−(T−t)rE∗[ϕ(ST ) ∣∣St].

The converse inequality
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e−(T−t)rE∗[ϕ(ST ) ∣∣St] ⩽ Sup
t⩽τ⩽T

τ Stopping time

E∗[ e−(τ−t)rϕ(Sτ )
∣∣St],

is obvious because T is a stopping time. □

As a consequence of Proposition 15.10 applied to the convex function ϕ(x) =
(x−K)+, the price of the finite expiration American call option is given by

f(t,St) = Sup
t⩽τ⩽T

τ Stopping time

E∗[ e−(τ−t)r(Sτ −K)+
∣∣St]

= e−(T−t)rE∗[(ST −K)+
∣∣St],

i.e. the optimal strategy is to wait until the maturity time T to exercise
the option. In the following Table 15.1 we summarize the optimal exercise
strategies for the pricing of American options.

Option Perpetual Finite expiration
type Pricing Optimal time Pricing Optimal time

Put
option


K − St, 0 < St ⩽ L∗,

(K − L∗)
(

St

L∗

)−2r/σ2

, St ⩾ L∗.
τ∗ = τL∗

Solve the PDE (15.30a)-
(15.30c) for f(t, x) or use

Longstaff and Schwartz (2001)
τ∗ = T ∧ inf{u ⩾ t : f(u, Su) = (K − Su)

+}

Call
option St τ∗ = +∞ e−(T −t)rE∗[(ST − K)+ | St] τ∗ = T

Table 15.1: Optimal exercise strategies.

Exercises

Exercise 15.1 Consider a two-step binomial model (Sk)k=0,1,2 with interest
rate r = 0% and risk-neutral probabilities (p∗, q∗):
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S2 = 1.44

S1 = 1.2

S0 = 1 S2 = 1.08

S1 = 0.9

S2 = 0.81

p∗ = 2/3

q ∗
= 1/3

p∗ = 2/3

q ∗
= 1/3

p∗ = 2/3

q ∗
= 1/3

a) At time t = 1, would you exercise the American put option with strike
price K = 1.25 if S1 = 1.2? If S1 = 0.9?

b) What would be your investment allocation at time t = 0?∗

Exercise 15.2 Let r > 0 and σ > 0.

a) Show that for every C > 0, the function f(x) := Cx−2r/σ2 solves the
differential equation

rf(x) = rxf ′(x) +
1
2σ

2x2f ′′(x),

lim
x→∞

f(x) = 0.

b) Show that for every K > 0 there exists a unique level L∗ ∈ (0,K) and
constant C > 0 such that f(x) also solves the smooth fit conditions
f(L∗) = K −L∗ and f ′(L∗) = −1.

Exercise 15.3 Consider an American butterfly option with the following
payoff function in the geometric Brownian model (15.3), i.e.

St = S0 ert+σB̂t−σ2t/2, t ⩾ 0.

∗ Download the corresponding discrete-time that can be run here
or here.
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{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from IPython.core.display import display, HTML\n",
    "display(HTML(\"\"\"<a href=\"https://personal.ntu.edu.sg/nprivault/indext.html\">https://personal.ntu.edu.sg/nprivault/indext.html</a>\"\"\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pip install networkx==2.3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pip install matplotlib==2.2.3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "import networkx as nx \n",
    "import numpy as np\n",
    "import matplotlib \n",
    "import matplotlib.pyplot as plt \n",
    "\n",
    "N=3;S0=1\n",
    "\n",
    "r=0.75;a=-0.5;b = 2\n",
    "\n",
    "p = (r-a)/(b-a)\n",
    "q = (b-r)/(b-a)\n",
    "\n",
    "def plot_tree(g):\n",
    "    plt.figure(figsize=(20,10))\n",
    "    pos={}\n",
    "    lab={}\n",
    "    \n",
    "    for n in g.nodes():\n",
    "        pos[n]=(n[0],n[1])\n",
    "        if g.nodes[n]['value'] is not None: lab[n]=float(\"{0:.2f}\".format(g.nodes[n]['value']))\n",
    "        \n",
    "    elarge=g.edges(data=True)\n",
    "    nx.draw_networkx_labels(g,pos,lab,font_size=15)\n",
    "    nx.draw_networkx_nodes(g,pos,node_color='lightblue',alpha=0.4,node_size=1000)\n",
    "    nx.draw_networkx_edges(g,pos,edge_color='blue',alpha=0.7,width=3,edgelist=elarge)\n",
    "    plt.ylim(-N+0.5,N+1.5) \n",
    "    plt.xlim(-0.5,N+0.5)\n",
    "    plt.show()\n",
    "       \n",
    "def graph_stock():\n",
    "    S=nx.Graph()\n",
    "    for k in range(0,N):\n",
    "        for l in range(-k+1,k+3,2):\n",
    "            S.add_edge((k,l),(k+1,l+1))\n",
    "            S.add_edge((k,l),(k+1,l-1))\n",
    "            \n",
    "    for n in S.nodes():\n",
    "        k=n[0]\n",
    "        l=n[1]-1\n",
    "        S.nodes[n]['value']=S0*((1.0+b)**((k+l)/2))*((1.0+a)**((k-l)/2))\n",
    "    return S\n",
    "\n",
    "S=nx.Graph()\n",
    "S =graph_stock()\n",
    "plot_tree(S)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def European_put_price(K):\n",
    "\n",
    "    price = nx.Graph()    \n",
    "    S = graph_stock()\n",
    "\n",
    "    for k in range(0,N):\n",
    "            for l in range(-k+1,k+3,2):\n",
    "                price.add_edge((k,l),(k+1,l+1))\n",
    "                price.add_edge((k,l),(k+1,l-1))\n",
    "    \n",
    "    for l in range(-N+1,N+3,2):\n",
    "        price.nodes[(N,l)]['value'] = np.maximum(K-S.nodes[(N,l)]['value'],0)\n",
    "     \n",
    "    for k in reversed(range(0,N)):\n",
    "        for l in range(-k+1,k+3,2):\n",
    "            price.nodes[(k,l)]['value'] = (price.nodes[(k+1,l+1)]['value']*p+price.nodes[(k+1,l-1)]['value']*q)/(1+r)        \n",
    "    return price"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def American_put_price(K):\n",
    "\n",
    "    price = nx.Graph()    \n",
    "    S = graph_stock()\n",
    "\n",
    "    for k in range(0,N):\n",
    "            for l in range(-k+1,k+3,2):\n",
    "                price.add_edge((k,l),(k+1,l+1))\n",
    "                price.add_edge((k,l),(k+1,l-1))\n",
    "    \n",
    "    for l in range(-N+1,N+3,2):\n",
    "        price.nodes[(N,l)]['value'] = np.maximum(K-S.nodes[(N,l)]['value'],0)\n",
    "     \n",
    "    for k in reversed(range(0,N)):\n",
    "        for l in range(-k+1,k+3,2):\n",
    "            temp = (price.nodes[(k+1,l+1)]['value']*p+price.nodes[(k+1,l-1)]['value']*q)/(1.0+r)\n",
    "            price.nodes[(k,l)]['value'] = np.maximum(np.maximum(K-S.nodes[(k,l)]['value'],0),temp)\n",
    "    return price"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "K = input(\"Strike=\")\n",
    "\n",
    "american_put = American_put_price(float(K))\n",
    "european_put = European_put_price(float(K))\n",
    "\n",
    "print('Underlying asset prices:')\n",
    "plot_tree(S)\n",
    "print('European put prices:')\n",
    "plot_tree(european_put)\n",
    "print('American put prices:')\n",
    "plot_tree(american_put)\n",
    "print('Price at time 0 of the American put option:',american_put.nodes[(0,1)]['value'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def European_call_price(K):\n",
    "\n",
    "    price = nx.Graph()    \n",
    "    S = graph_stock()\n",
    "\n",
    "    for k in range(0,N):\n",
    "            for l in range(-k+1,k+3,2):\n",
    "                price.add_edge((k,l),(k+1,l+1))\n",
    "                price.add_edge((k,l),(k+1,l-1))\n",
    "    \n",
    "    for l in range(-N+1,N+3,2):\n",
    "        price.nodes[(N,l)]['value'] = np.maximum(S.nodes[(N,l)]['value']-K,0)\n",
    "     \n",
    "    for k in reversed(range(0,N)):\n",
    "        for l in range(-k+1,k+3,2):\n",
    "            price.nodes[(k,l)]['value'] = (price.nodes[(k+1,l+1)]['value']*p+price.nodes[(k+1,l-1)]['value']*q)/(1+r)        \n",
    "    return price"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def American_call_price(K):\n",
    "\n",
    "    price = nx.Graph()    \n",
    "    S = graph_stock()\n",
    "\n",
    "    for k in range(0,N):\n",
    "            for l in range(-k+1,k+3,2):\n",
    "                price.add_edge((k,l),(k+1,l+1))\n",
    "                price.add_edge((k,l),(k+1,l-1))\n",
    "    \n",
    "    for l in range(-N+1,N+3,2):\n",
    "        price.nodes[(N,l)]['value'] = np.maximum(S.nodes[(N,l)]['value']-K,0)\n",
    "     \n",
    "    for k in reversed(range(0,N)):\n",
    "        for l in range(-k+1,k+3,2):            \n",
    "            temp = (price.nodes[(k+1,l+1)]['value']*p+price.nodes[(k+1,l-1)]['value']*q)/(1+r)\n",
    "            price.nodes[(k,l)]['value'] = np.maximum(np.maximum(S.nodes[(k,l)]['value']-K,0),temp)\n",
    "    return price"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "K = input(\"Strike K=\")\n",
    "\n",
    "european_call = European_call_price(float(K))\n",
    "american_call = American_call_price(float(K))\n",
    "\n",
    "print('Underlying asset prices:')\n",
    "plot_tree(S)\n",
    "print('European call prices:')\n",
    "plot_tree(european_call)\n",
    "print('American call prices:')\n",
    "plot_tree(american_call)\n",
    "print('Price at time 0 of the American call option:',american_call.nodes[(0,1)]['value'])"
   ]
  }
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Fig. 15.14: Butterfly payoff function.

Price the perpetual American butterfly option with r > 0 in the following
cases.

a) K̂ ⩽ L∗ ⩽ S0.
b) K̂ ⩽ S0 ⩽ L∗.
c) 0 ⩽ S0 ⩽ K̂.

Exercise 15.4 (Barone-Adesi and Whaley (1987)) We approximate the
finite expiration American put option price with strike price K as

f(x,T ) ≃


BSp(x,T ) + α(x/S∗)−2r/σ2 , x > S∗,

K − x, x ⩽ S∗,

(15.32)

(15.33)

where α > 0 is a parameter, S∗ > 0 is called the critical price, and
BSp(x,T ) = e−rTKΦ(−d−(x,T ))−xΦ(−d+(x,T )) is the Black-Scholes put
pricing function.

a) Find the value α∗ of α which achieves a smooth fit (equality of derivatives
in x) between (15.32) and (15.33) at x = S∗.

b) Derive the equation satisfied by the critical price S∗.

Exercise 15.5 Consider the process (Xt)t∈R+ given by Xt := tZ, t ∈ R+,
where Z ∈ {0, 1} is a Bernoulli random variable with P(Z = 1) = P(Z =
0) = 1/2. Given ϵ ⩾ 0, let the random time τϵ be defined as

τϵ := inf{t > 0 : Xt > ϵ},

with inf ∅ = +∞, and let (Ft)t∈R+ denote the filtration generated by
(Xt)t∈R+ .

a) Give the possible values of τϵ in [0, ∞] depending on the value of Z.
b) Take ϵ = 0. Is τ0 := inf{t > 0 : Xt > 0} an (Ft)t∈R+ -stopping time?

Hint: Consider the event {τ0 > 0}.
c) Take ϵ > 0. Is τϵ := inf{t > 0 : Xt > ϵ} an (Ft)t∈R+ -stopping time?

Hint: Consider the event {τϵ > t} for t ⩾ 0.
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Exercise 15.6 American put options with dividends, cf. Exercise 8.5 in Shreve
(2004). Consider a dividend-paying asset priced as

St = S0 e(r−δ)t+σB̂t−σ2t/2, t ⩾ 0,

where r > 0 is the risk-free interest rate, δ ⩾ 0 is a continuous dividend rate,
(B̂t)t∈R+ is a standard Brownian motion under the risk-neutral probability
measure P∗, and σ > 0 is the volatility coefficient. Consider the American
put option with payoff

(κ− Sτ )
+ =

κ− Sτ if Sτ ⩽ κ,

0 if Sτ > κ,

when exercised at the stopping time τ > 0. Given L ∈ (0,κ) a fixed level,
consider the following exercise strategy for the above option:

- If St ⩽ L, then exercise at time t.
- If St > L, wait until the hitting time τL := inf{u ⩾ t : Su = L}, and
exercise the option at time τL.

a) Give the intrinsic option value at time t = 0 in case S0 ⩽ L.

In what follows we work with S0 = x > L.
b) Show that for all λ ∈ R the process

(
Z
(λ)
t

)
t∈R+

defined as

Z
(λ)
t :=

(
St
S0

)λ
e−((r−δ)λ−λ(1−λ)σ2/2)t

is a martingale under the risk-neutral probability measure P∗.
c) Show that

(
Z
(λ)
t

)
t∈R+

can be rewritten as

Z
(λ)
t =

(
St
S0

)λ
e−rt, t ⩾ 0,

for two values λ− ⩽ 0 ⩽ λ+ of λ that can be computed explicitly.
d) Choosing the negative solution λ−, show that

0 ⩽ Z
(λ−)
t ⩽

(
L

S0

)λ−

, 0 ⩽ t ⩽ τL.

e) Let τL denote the hitting time

τL = inf{u ∈ R+ : Su ⩽ L}.

By application of the Stopping Time Theorem 14.8 to the martingale
(Zt)t∈R+ , show that
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E∗[ e−rτL
]
=

(
S0
L

)λ−

, (15.34)

with

λ− :=
−(r− δ− σ2/2) −

√
(r− δ− σ2/2)2 + 4rσ2/2
σ2 . (15.35)

f) Show that for all L ∈ (0,K) we have

E∗[ e−rτL(K − SτL)
+
∣∣S0 = x

]
=


K − x, 0 < x ⩽ L,

(K −L)
( x
L

)−(r−δ−σ2/2)−
√

(r−δ−σ2/2)2+4rσ2/2
σ2 , x ⩾ L.

g) Show that the value L∗ of L that maximizes

fL(x) := E∗[ e−rτL(K − SτL)
+
∣∣S0 = x

]
for every x > 0 is given by

L∗ =
λ−

λ− − 1K.

h) Show that

fL∗(x) =


K − x, 0 < x ⩽ L∗ =

λ−
λ− − 1K,

(
1 − λ−
K

)λ−−1( x

−λ−

)λ−

, x ⩾ L∗ =
λ−

λ− − 1K,

i) Show by hand computation that fL∗(x) satisfies the variational differential
equation

fL∗(x) ⩾ (K − x)+,

(r− δ)xf ′
L∗(x) +

1
2σ

2x2f ′′
L∗(x) ⩽ rfL∗(x),

(
rfL∗(x) − (r− δ)xf ′

L∗(x) − 1
2σ

2x2f ′′
L∗(x)

)
× (fL∗(x) − (K − x)+) = 0.

(15.36a)

(15.36b)

(15.36c)
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j) Using Itô’s formula, check that the discounted portfolio value process

t 7→ e−rtfL∗(St)

is a supermartingale.
k) Show that we have

fL∗(S0) ⩾ Sup
τ Stopping time

E∗[ e−rτ (K − Sτ )
+
∣∣S0
]
.

l) Show that the stopped process

s 7→ e−(s∧τL∗ )rfL∗(Ss∧τL∗ ), s ⩾ 0,

is a martingale, and that

fL∗(S0) ⩽ Sup
τ Stopping time

E∗[ e−rτ (K − Sτ )
+
]
.

m) Fix t ∈ R+ and let τL∗ denote the hitting time

τL∗ = inf{u ⩾ t : Su = L∗}.

Conclude that the price of the perpetual American put option with divi-
dend is given for all t ∈ R+ by

fL∗(St) = E∗[ e−(τL∗ −t)r(K − SτL∗ )
+
∣∣St]

=


K − St, 0 < St ⩽

λ−
λ− − 1K,

(
1 − λ−
K

)λ−−1( St
−λ−

)λ−

, St ⩾
λ−

λ− − 1K,

where λ− < 0 is given by (15.35), and

τL∗ = inf{u ⩾ t : Su ⩽ L}.

Exercise 15.7 (Broadie and Detemple (1996)) Given an asset price process
(St)t∈[0,T ] and K > 0, find a ranking of the form “(x) ⩽ (y) ⩽ (z)” between
the three listed quantities in the following two cases L ⩾ K and L ⩽ K, and
provide a short justification for each inequality, if available.

a) Case L ⩾ K.

i) the immediate exercise payoff (St −K)+,
ii) the finite exercise American call price with maturity T and strike K,
iii) the supremum over L ⩾ K of the capped call option prices with

payoff (min(ST ,L) −K)+ and maturity T .
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b) Case L ⩽ K.

i) the finite exercise American put price with maturity T and strike K,
ii) the supremum over L ⩽ K of the capped put option prices payoff

(K − Max(ST ,L))+ and maturity T ,
iii) the immediate exercise payoff (K − St)+.

Exercise 15.8 American call options with dividends, see § 9.3 of Wilmott
(2006). Consider a dividend-paying asset priced as St = S0 e(r−δ)t+σB̂t−σ2t/2,
t ⩾ 0, where r > 0 is the risk-free interest rate, δ ⩾ 0 is a continuous dividend
rate, and σ > 0.

a) Show that for all λ ∈ R the process Z(λ)
t := (St)

λ e−((r−δ)λ−λ(1−λ)σ2/2)t

is a martingale under P∗.
b) Show that we have Z(λ)

t = (St)
λ e−rt for two values λ− ⩽ 0, 1 ⩽ λ+ of λ

satisfying a certain equation.
c) Show that 0 ⩽ Z

(λ+)
t ⩽ Lλ+ for 0 ⩽ t ⩽ τL := inf{u ⩾ t : Su = L}, and

compute E∗[ e−rτL(SτL −K)+
∣∣S0 = x

]
when S0 = x < L and K < L.

Exercise 15.9 Optimal stopping for exchange options (Gerber and Shiu
(1996)). We consider two risky assets S1 and S2 modeled by

S1(t) = S1(0) eσ1Wt+rt−σ2
2t/2 and S2(t) = S2(0) eσ2Wt+rt−σ2

2t/2,
(15.37)

t ⩾ 0, with σ2 > σ1 ⩾ 0 and r > 0, and the perpetual optimal stopping
problem

Sup
τ Stopping time

E[ e−rτ (S1(τ ) − S2(τ ))
+],

where (Wt)t∈R+ is a standard Brownian motion under P.

a) Find α > 1 such that the process

Zt := e−rtS1(t)
αS2(t)

1−α, t ⩾ 0, (15.38)

is a martingale.
b) For some fixed L ⩾ 1, consider the hitting time

τL = inf
{
t ∈ R+ : S1(t) ⩾ LS2(t)

}
,

and show that

E[ e−rτL(S1(τL) − S2(τL))
+] = (L− 1)E[ e−rτLS2(τL)].

c) By an application of the Stopping Time Theorem 14.8 to the martingale
(15.38), show that we have
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E[ e−rτL(S1(τL) − S2(τL))
+] =

L− 1
Lα

S1(0)αS2(0)1−α.

d) Show that the price of the perpetual exchange option is given by

Sup
τ Stopping time

E[ e−rτ (S1(τ ) − S2(τ ))
+] =

L∗ − 1
(L∗)α

S1(0)αS2(0)1−α,

where
L∗ =

α

α− 1 .

e) As an application of Question (d), compute the perpetual American put
option price

Sup
τ Stopping time

E[ e−rτ (κ− S2(τ ))
+]

when r = σ2
2/2.

Exercise 15.10 Consider an underlying asset whose price is written as

St = S0 ert+σBt−σ2t/2, t ⩾ 0,

where (Bt)t∈R+ is a standard Brownian motion under the risk-neutral prob-
ability measure P∗, σ > 0 denotes the volatility coefficient, and r ∈ R is the
risk-free interest rate. For any λ ∈ R we consider the process

(
Z
(λ)
t

)
t∈R+

defined by

Z
(λ)
t := e−rt(St)

λ

= (S0)
λ eλσBt−λ2σ2t/2+(λ−1)(λ+2r/σ2)σ2t/2, t ⩾ 0. (15.39)

a) Assume that r ⩾ −σ2/2. Show that, under P∗, the process
(
Z
(λ)
t

)
t∈R+

is
a supermartingale when −2r/σ2 ⩽ λ ⩽ 1, and that it is a submartingale
when λ ∈ (−∞, −2r/σ2] ∪ [1, ∞).

b) Assume that r ⩽ −σ2/2. Show that, under P∗, the process
(
Z
(λ)
t

)
t∈R+

is
a supermartingale when 1 ⩽ λ ⩽ −2r/σ2, and that it is a submartingale
when λ ∈ (−∞, 1] ∪ [−2r/σ2, ∞).

c) From this question onwards, we assume that r < 0. Given L > 0, let τL
denote the hitting time

τL = inf{u ∈ R+ : Su = L}.

By application of the Stopping Time Theorem 14.8 to
(
Z
(λ)
t

)
t∈R+

to suit-
able values of λ, show that
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E∗ [ e−rτL1{τL<∞} | S0 = x
]
⩽


( x
L

)Max(1,−2r/σ2)
, x ⩾ L,

( x
L

)min(1,−2r/σ2)
, 0 < x ⩽ L.

d) Deduce an upper bound on the price

E∗[ e−rτL(K − SτL)
+
∣∣S0 = x

]
of the American put option exercised in finite time under the stopping
strategy τL when L ∈ (0,K) and x ⩾ L.

e) Show that when r ⩽ −σ2/2, the upper bound of Question (d) increases
and tends to +∞ when L decreases to 0.

f) Find an upper bound on the price

E∗[ e−rτL(SτL −K)+1{τL<∞}
∣∣S0 = x

]
of the American call option exercised in finite time under the stopping
strategy τL when L ⩾ K and x ⩽ L.

g) Show that when −σ2/2 ⩽ r < 0, the upper bound of Question (f) increases
in L ⩾ K, and tends to S0 as L increases to +∞.

Exercise 15.11 Perpetual American binary options.

a) Compute the price

CAm
b (t,St) = Sup

τ⩾t
τ Stopping time

E∗[ e−(τ−t)r
1{Sτ⩾K}

∣∣St]
of the perpetual American binary call option.

b) Compute the price

PAm
b (t,St) = Sup

τ⩾t
τ Stopping time

E∗[ e−(τ−t)r
1{Sτ⩽K}

∣∣St]
of the perpetual American binary put option.

Exercise 15.12 Finite expiration American binary options. An American
binary (or digital) call (resp. put) option with maturity T > 0 on an under-
lying asset process (St)t∈R+ = ( ert+σBt−σ2t/2)t∈R+ can be exercised at any
time t ∈ [0,T ], at the choice of the option holder.

The call (resp. put) option exercised at time t yields the payoff 1[K,∞)(St)

(resp. 1[0,K](St)), and the option holder wants to find an exercise strategy
that will maximize his payoff.
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a) Consider the following possible situations at time t:

i) St ⩾ K,
ii) St < K.

In each case (i) and (ii), tell whether you would choose to exercise the
call option immediately, or to wait.

b) Consider the following possible situations at time t:

i) St > K,
ii) St ⩽ K.

In each case (i) and (ii), tell whether you would choose to exercise the
put option immediately, or to wait.

c) The price CAm
d (t,T ,St) of an American binary call option is known to

satisfy the Black-Scholes PDE

rCAm
d (t,T ,x) =

∂CAm
d

∂t
(t,T ,x)+ rx

∂CAm
d

∂x
(t,T ,x)+ 1

2σ
2x2 ∂

2CAm
d

∂x2 (t,T ,x).

Based on your answers to Question (a), how would you set the boundary
conditions CAm

d (t,T ,K), 0 ⩽ t < T , and CAm
d (T ,T ,x), 0 ⩽ x < K?

d) The price PAm
d (t,T ,St) of an American binary put option is known to

satisfy the same Black-Scholes PDE

rPAm
d (t,T ,x) =

∂PAm
d

∂t
(t,T ,x)+ rx

∂PAm
d

∂x
(t,T ,x)+ 1

2σ
2x2 ∂

2PAm
d

∂x2 (t,T ,x).
(15.40)

Based on your answers to Question (b), how would you set the boundary
conditions PAm

d (t,T ,K), 0 ⩽ t < T , and PAm
d (T ,T ,x), x > K?

e) Show that the optimal exercise strategy for the American binary call op-
tion with strike price K is to exercise as soon as the price of the underlying
asset reaches the level K, i.e. at time

τK := inf{u ⩾ t : Su = K},

starting from any level St ⩽ K, and that the price CAm
d (t,T ,St) of the

American binary call option is given by

CAm
d (t,x) = E

[
e−(τK−t)r

1{τK<T} | St = x
]
.

f) Show that the price CAm
d (t,T ,St) of the American binary call option is

equal to

CAm
d (t,T ,x) = x

K
Φ
(
(r+ σ2/2)(T − t) + log(x/K)

σ
√
T − t

)
+
( x
K

)−2r/σ2

Φ
(

−(r+ σ2/2)(T − t) + log(x/K)

σ
√
T − t

)
, 0 ⩽ x ⩽ K,
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that this formula is consistent with the answer to Question (c), and that
it recovers the answer to Question (a) of Exercise 15.11 as T tends to
infinity.

g) Show that the optimal exercise strategy for the American binary put op-
tion with strike price K is to exercise as soon as the price of the underlying
asset reaches the level K, i.e. at time

τK := inf{u ⩾ t : Su = K},

starting from any level St ⩾ K, and that the price PAm
d (t,T ,St) of the

American binary put option is

PAm
d (t,T ,x) = E[ e−(τK−t)r

1{τK<T} | St = x], x ⩾ K.

h) Show that the price PAm
d (t,T ,St) of the American binary put option is

equal to

PAm
d (t,T ,x) = x

K
Φ
(

−(r+ σ2/2)(T − t) − log(x/K)

σ
√
T − t

)
+
( x
K

)−2r/σ2

Φ
(
(r+ σ2/2)(T − t) − log(x/K)

σ
√
T − t

)
, x ⩾ K,

that this formula is consistent with the answer to Question (d), and that
it recovers the answer to Question (b) of Exercise 15.11 as T tends to
infinity.

i) Does the standard call-put parity relation hold for American binary op-
tions?

Exercise 15.13 American forward contracts. Consider (St)t∈R+ an asset
price process given by

dSt
St

= rdt+ σdBt,

where r > 0 and (Bt)t∈R+ is a standard Brownian motion under P∗.

a) Compute the price

f(t,St) = Sup
t⩽τ⩽T

τ Stopping time

E∗[ e−(τ−t)r(K − Sτ )
∣∣St],

and optimal exercise strategy of a finite expiration American-type short
forward contract with strike price K on the underlying asset priced
(St)t∈R+ , with payoff K − Sτ when exercised at time τ ∈ [0,T ].

b) Compute the price

f(t,St) = Sup
t⩽τ⩽T

τ Stopping time

E∗[ e−(τ−t)r(Sτ −K)
∣∣St],
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and optimal exercise strategy of a finite expiration American-type long for-
ward contract with strike price K on the underlying asset priced (St)t∈R+ ,
with payoff Sτ −K when exercised at time τ ∈ [0,T ].

c) How are the answers to Questions (a) and (b) modified in the case of
perpetual options with T = +∞?

Exercise 15.14 Consider an underlying asset price process written as

St = S0 ert+σB̂t−σ2t/2, t ⩾ 0,

where (B̂t)t∈R+ is a standard Brownian motion under the risk-neutral prob-
ability measure P∗, with σ, r > 0.

a) Show that the processes (Yt)t∈R+ and (Zt)t∈R+ defined as

Yt := e−rtS−2r/σ2
t and Zt := e−rtSt, t ⩾ 0,

are both martingales under P∗.
b) Let τL denote the hitting time

τL = inf{u ∈ R+ : Su = L}.

By application of the Stopping Time Theorem 14.8 to the martingales
(Yt)t∈R+ and (Zt)t∈R+ , show that

E∗[ e−rτL
∣∣S0 = x

]
=


x

L
, 0 < x ⩽ L,

( x
L

)−2r/σ2

, x ⩾ L.

c) Compute the price E∗[ e−rτL(K −SτL)] of a short forward contract under
the exercise strategy τL.

d) Show that for every value of S0 = x there is an optimal value L∗
x of L

that maximizes L 7→ E[ e−rτL(K − SτL)].
e) Would you use the stopping strategy

τL∗
x
= inf{u ∈ R+ : Su = L∗

x}

as an optimal exercise strategy for the short forward contract with payoff
K − Sτ?

Exercise 15.15 Let p ⩾ 1 and consider a power put option with payoff

((κ− Sτ )
+)p =

{
(κ− Sτ )p if Sτ ⩽ κ,
0 if Sτ > κ,
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exercised at time τ , on an underlying asset whose price St is written as

St = S0 ert+σBt−σ2t/2, t ⩾ 0,

where (Bt)t∈R+ is a standard Brownian motion under the risk-neutral prob-
ability measure P∗, r ⩾ 0 is the risk-free interest rate, and σ > 0 is the
volatility coefficient.

Given L ∈ (0,κ) a fixed price, consider the following choices for the exercise
of a put option with strike price κ:

i) If St ⩽ L, then exercise at time t.

ii) Otherwise, wait until the first hitting time τL := inf{u ⩾ t : Su = L},
and exercise the option at time τL.

a) Under the above strategy, what is the option payoff equal to if St ⩽ L ?
b) Show that in case St > L, the price of the option is equal to

fL(St) = (κ−L)pE∗[ e−(τL−t)r ∣∣St].
c) Compute the price fL(St) of the option at time t.

Hint: Recall that by (15.4) we have E∗[ e−(τL−t)r | St = x] = (x/L)−2r/σ2

for x ⩾ L.
d) Compute the optimal value L∗ that maximizes L 7→ fL(x) for all fixed

x > 0.

Hint: Observe that, geometrically, the slope of x 7→ fL(x) at x = L∗ is
equal to −p(κ−L∗)p−1.

e) How would you compute the American put option price

f(t,St) = Sup
τ⩾t

τ Stopping time

E∗[ e−(τ−t)r((κ− Sτ )
+)p

∣∣St] ?

Exercise 15.16 Same questions as in Exercise 15.15, this time for the option
with payoff κ− (Sτ )p exercised at time τ , with p > 0.

564 "

This version: May 3, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html

	pbs@ARFix@553: 
	pbs@ARFix@554: 
	pbs@ARFix@555: 
	pbs@ARFix@556: 
	pbs@ARFix@557: 
	pbs@ARFix@558: 
	37.0: 
	37.1: 
	37.2: 
	37.3: 
	37.4: 
	37.5: 
	37.6: 
	37.7: 
	37.8: 
	37.9: 
	37.10: 
	37.11: 
	37.12: 
	37.13: 
	37.14: 
	37.15: 
	37.16: 
	37.17: 
	37.18: 
	37.19: 
	37.20: 
	37.21: 
	37.22: 
	37.23: 
	37.24: 
	37.25: 
	37.26: 
	37.27: 
	37.28: 
	37.29: 
	37.30: 
	anm37: 
	37.EndLeft: 
	37.StepLeft: 
	37.PauseLeft: 
	37.PlayLeft: 
	37.PlayPauseLeft: 
	37.PauseRight: 
	37.PlayRight: 
	37.PlayPauseRight: 
	37.StepRight: 
	37.EndRight: 
	37.Minus: 
	37.Reset: 
	37.Plus: 
	pbs@ARFix@559: 
	pbs@ARFix@560: 
	pbs@ARFix@561: 
	pbs@ARFix@562: 
	pbs@ARFix@563: 
	pbs@ARFix@564: 
	pbs@ARFix@565: 
	pbs@ARFix@566: 
	38.0: 
	38.1: 
	38.2: 
	38.3: 
	38.4: 
	38.5: 
	38.6: 
	38.7: 
	38.8: 
	38.9: 
	38.10: 
	38.11: 
	anm38: 
	38.EndLeft: 
	38.StepLeft: 
	38.PauseLeft: 
	38.PlayLeft: 
	38.PlayPauseLeft: 
	38.PauseRight: 
	38.PlayRight: 
	38.PlayPauseRight: 
	38.StepRight: 
	38.EndRight: 
	38.Minus: 
	38.Reset: 
	38.Plus: 
	pbs@ARFix@567: 
	pbs@ARFix@568: 
	pbs@ARFix@569: 
	pbs@ARFix@570: 
	pbs@ARFix@571: 
	pbs@ARFix@572: 
	pbs@ARFix@573: 
	pbs@ARFix@574: 
	pbs@ARFix@575: 
	pbs@ARFix@576: 
	pbs@ARFix@577: 
	pbs@ARFix@578: 
	pbs@ARFix@579: 
	pbs@ARFix@580: 
	pbs@ARFix@581: 
	pbs@ARFix@582: 
	pbs@ARFix@583: 
	pbs@ARFix@584: 
	pbs@ARFix@585: 
	pbs@ARFix@586: 
	pbs@ARFix@587: 
	pbs@ARFix@588: 


